Skip to main content

2020 | OriginalPaper | Buchkapitel

A Model for Electro-osmotic Flow of Pseudoplastic Nanofluids in Presence of Peristaltic Pumping: An Application to Smart Pumping in Energy Systems

verfasst von : J. Prakash, M. Gnaneswara Reddy, D. Tripathi, Abhishek Kumar Tiwari

Erschienen in: Nanotechnology for Energy and Environmental Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermal enhancement in non-Newtonian nanofluids is a challenge which can be observed in energy systems. Recent developments in biomimetics identified that deformable conduit structure is beneficial for sustainable energy systems. Such recent developments in energy systems motivated the present study to discuss the mathematical modeling of electro-osmotic flow of non-Newtonian nanofluids through a microchannel in the presence of Joule heating and peristalsis. The model presented in this chapter assumes that the movement of the fluids can be controlled by electro-osmotic force generated as a result of an external electric field. A pseudoplastic fluid model is assumed as appropriate to compute the non-Newtonian effects. Nonlinear formulation present in the model is simplified with the help of lubrication theory and Hückel–Debye approximations. Modeled governing equations are solved to determine the flow, temperature, and electric potential fields. The flow behavior and thermal characteristics are simulated as a function of physical parameters. The results are represented graphically and correlated using physical phenomena. The significant features of pumping and trapping are also briefly addressed. The formulation of the model presented in this chapter can be useful in the experimental designs of smart nano-electro-peristaltic pumps, in addition, it can also be extended to nanotechnological applications, smart drug delivery systems, and various transport phenomena of environmental systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akbar NS, Huda AB, Tripathi D (2016) Thermally developing MHD peristaltic transport of nanofluids with velocity and thermal slip effects. Eur Phys J Plus 131(9):332CrossRef Akbar NS, Huda AB, Tripathi D (2016) Thermally developing MHD peristaltic transport of nanofluids with velocity and thermal slip effects. Eur Phys J Plus 131(9):332CrossRef
Zurück zum Zitat Bandopadhyay A, Tripathi D, Chakraborty S (2016) Electroosmosis-modulated peristaltic transport in microfluidic channels. Phys Fluids 28(5):52002CrossRef Bandopadhyay A, Tripathi D, Chakraborty S (2016) Electroosmosis-modulated peristaltic transport in microfluidic channels. Phys Fluids 28(5):52002CrossRef
Zurück zum Zitat Bandyopadhyay S, Chakraborty S (2018) Thermophoretically driven capillary transport of nanofluid in a microchannel. Adv Powder Technol 29(4):964–971CrossRef Bandyopadhyay S, Chakraborty S (2018) Thermophoretically driven capillary transport of nanofluid in a microchannel. Adv Powder Technol 29(4):964–971CrossRef
Zurück zum Zitat Bhatti M, Zeeshan A, Ellahi R, Ijaz N (2017) Heat and mass transfer of two-phase flow with Electric double layer effects induced due to peristaltic propulsion in the presence of transverse magnetic field. J Mol Liq 230:237–246CrossRef Bhatti M, Zeeshan A, Ellahi R, Ijaz N (2017) Heat and mass transfer of two-phase flow with Electric double layer effects induced due to peristaltic propulsion in the presence of transverse magnetic field. J Mol Liq 230:237–246CrossRef
Zurück zum Zitat Buongiorno J (2006) Convective transport in nanofluids. J Heat Transf 128(3):240–250CrossRef Buongiorno J (2006) Convective transport in nanofluids. J Heat Transf 128(3):240–250CrossRef
Zurück zum Zitat Chakraborty S (2006) Augmentation of peristaltic microflows through electro-osmotic mechanisms. J Phys D Appl Phys 39(24):5356CrossRef Chakraborty S (2006) Augmentation of peristaltic microflows through electro-osmotic mechanisms. J Phys D Appl Phys 39(24):5356CrossRef
Zurück zum Zitat Choi SU, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab, IL (United States) Choi SU, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab, IL (United States)
Zurück zum Zitat Das S, Chakraborty S (2006) Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid. Anal Chim Acta 559(1):15–24CrossRef Das S, Chakraborty S (2006) Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid. Anal Chim Acta 559(1):15–24CrossRef
Zurück zum Zitat Ganguly S, Sarkar S, Hota TK, Mishra M (2015) Thermally developing combined electroosmotic and pressure-driven flow of nanofluids in a microchannel under the effect of magnetic field. Chem Eng Sci 126:10–21CrossRef Ganguly S, Sarkar S, Hota TK, Mishra M (2015) Thermally developing combined electroosmotic and pressure-driven flow of nanofluids in a microchannel under the effect of magnetic field. Chem Eng Sci 126:10–21CrossRef
Zurück zum Zitat Ghasemi SE (2017) Thermophoresis and Brownian motion effects on peristaltic nanofluid flow for drug delivery applications. J Mol Liq 238:115–121CrossRef Ghasemi SE (2017) Thermophoresis and Brownian motion effects on peristaltic nanofluid flow for drug delivery applications. J Mol Liq 238:115–121CrossRef
Zurück zum Zitat Goswami P, Chakraborty J, Bandopadhyay A, Chakraborty S (2016) Electrokinetically modulated peristaltic transport of power-law fluids. Microvasc Res 103:41–54CrossRef Goswami P, Chakraborty J, Bandopadhyay A, Chakraborty S (2016) Electrokinetically modulated peristaltic transport of power-law fluids. Microvasc Res 103:41–54CrossRef
Zurück zum Zitat Guo X, Qi H (2017) Analytical solution of electro-osmotic peristalsis of fractional Jeffreys fluid in a micro-channel. Micromachines 8(12):341CrossRef Guo X, Qi H (2017) Analytical solution of electro-osmotic peristalsis of fractional Jeffreys fluid in a micro-channel. Micromachines 8(12):341CrossRef
Zurück zum Zitat Khanafer K, Vafai K (2018) A review on the applications of nanofluids in solar energy field. Renew Energy 123:398–406CrossRef Khanafer K, Vafai K (2018) A review on the applications of nanofluids in solar energy field. Renew Energy 123:398–406CrossRef
Zurück zum Zitat Kothandapani M, Prakash J (2015) Effects of thermal radiation parameter and magnetic field on the peristaltic motion of Williamson nanofluids in a tapered asymmetric channel. Int J Heat Mass Transf 81:234–245CrossRef Kothandapani M, Prakash J (2015) Effects of thermal radiation parameter and magnetic field on the peristaltic motion of Williamson nanofluids in a tapered asymmetric channel. Int J Heat Mass Transf 81:234–245CrossRef
Zurück zum Zitat Kothandapani M, Prakash J (2015) Effect of radiation and magnetic field on peristaltic transport of nanofluids through a porous space in a tapered asymmetric channel. J Magn Magn Mater 378:152–163CrossRef Kothandapani M, Prakash J (2015) Effect of radiation and magnetic field on peristaltic transport of nanofluids through a porous space in a tapered asymmetric channel. J Magn Magn Mater 378:152–163CrossRef
Zurück zum Zitat Kothandapani M, Prakash J (2016) Convective boundary conditions effect on peristaltic flow of a MHD Jeffery nanofluid. Appl Nanosci 6(3):323–335CrossRef Kothandapani M, Prakash J (2016) Convective boundary conditions effect on peristaltic flow of a MHD Jeffery nanofluid. Appl Nanosci 6(3):323–335CrossRef
Zurück zum Zitat Mekheimer KS, Hasona W, Abo-Elkhair R, Zaher A (2018) Peristaltic blood flow with gold nanoparticles as a third grade nanofluid in catheter: Application of cancer therapy. Phys Lett A 382(2–3):85–93CrossRef Mekheimer KS, Hasona W, Abo-Elkhair R, Zaher A (2018) Peristaltic blood flow with gold nanoparticles as a third grade nanofluid in catheter: Application of cancer therapy. Phys Lett A 382(2–3):85–93CrossRef
Zurück zum Zitat Mosayebidorcheh S, Hatami M (2018) Analytical investigation of peristaltic nanofluid flow and heat transfer in an asymmetric wavy wall channel (Part I: Straight channel). Int J Heat Mass Transf 126:790–799CrossRef Mosayebidorcheh S, Hatami M (2018) Analytical investigation of peristaltic nanofluid flow and heat transfer in an asymmetric wavy wall channel (Part I: Straight channel). Int J Heat Mass Transf 126:790–799CrossRef
Zurück zum Zitat Mosayebidorcheh S, Hatami M (2018) Analytical investigation of peristaltic nanofluid flow and heat transfer in an asymmetric wavy wall channel (Part II: Divergent channel). Int J Heat Mass Transf 126:800–808CrossRef Mosayebidorcheh S, Hatami M (2018) Analytical investigation of peristaltic nanofluid flow and heat transfer in an asymmetric wavy wall channel (Part II: Divergent channel). Int J Heat Mass Transf 126:800–808CrossRef
Zurück zum Zitat Noreen S, Alsaedi A, Hayat T (2012) Peristaltic flow of pseudoplastic fluid in an asymmetric channel. J Appl Mech 79(5):54501CrossRef Noreen S, Alsaedi A, Hayat T (2012) Peristaltic flow of pseudoplastic fluid in an asymmetric channel. J Appl Mech 79(5):54501CrossRef
Zurück zum Zitat Prakash J, Ramesh K, Tripathi D, Kumar R (2018) Numerical simulation of heat transfer in blood flow altered by electroosmosis through tapered micro-vessels. Microvasc Res 118:162–172CrossRef Prakash J, Ramesh K, Tripathi D, Kumar R (2018) Numerical simulation of heat transfer in blood flow altered by electroosmosis through tapered micro-vessels. Microvasc Res 118:162–172CrossRef
Zurück zum Zitat Prakash J, Sharma A, Tripathi D (2018) Thermal radiation effects on electroosmosis modulated peristaltic transport of ionic nanoliquids in biomicrofluidics channel. J Mol Liq 249:843–855CrossRef Prakash J, Sharma A, Tripathi D (2018) Thermal radiation effects on electroosmosis modulated peristaltic transport of ionic nanoliquids in biomicrofluidics channel. J Mol Liq 249:843–855CrossRef
Zurück zum Zitat Prakash J, Siva E, Tripathi D, Kuharat S, Bég OA (2019) Peristaltic pumping of magnetic nanofluids with thermal radiation and temperature-dependent viscosity effects: Modelling a solar magneto-biomimetic nanopump. Renew Energy 133:1308–1326CrossRef Prakash J, Siva E, Tripathi D, Kuharat S, Bég OA (2019) Peristaltic pumping of magnetic nanofluids with thermal radiation and temperature-dependent viscosity effects: Modelling a solar magneto-biomimetic nanopump. Renew Energy 133:1308–1326CrossRef
Zurück zum Zitat Ranjit N, Shit G (2017) Entropy generation on electro-osmotic flow pumping by a uniform peristaltic wave under magnetic environment. Energy 128:649–660CrossRef Ranjit N, Shit G (2017) Entropy generation on electro-osmotic flow pumping by a uniform peristaltic wave under magnetic environment. Energy 128:649–660CrossRef
Zurück zum Zitat Reuss F (1809) Charge-induced flow. Proc Imp Soc Nat Mosc: 327–344 Reuss F (1809) Charge-induced flow. Proc Imp Soc Nat Mosc: 327–344
Zurück zum Zitat Sadr R, Yoda M, Zheng Z, Conlisk A (2004) An experimental study of electro-osmotic flow in rectangular microchannels. J Fluid Mech 506:357–367CrossRef Sadr R, Yoda M, Zheng Z, Conlisk A (2004) An experimental study of electro-osmotic flow in rectangular microchannels. J Fluid Mech 506:357–367CrossRef
Zurück zum Zitat Santiago J (2001) Electroosmotic flows in microchannels with finite inertial and pressure forces. Anal Chem 73(10):2353–2365CrossRef Santiago J (2001) Electroosmotic flows in microchannels with finite inertial and pressure forces. Anal Chem 73(10):2353–2365CrossRef
Zurück zum Zitat Shehzad N, Zeeshan A, Ellahi R (2018) Electroosmotic flow of MHD power law Al2O3-PVC nanouid in a horizontal channel: couette-poiseuille flow model. Commun Theor Phys 69(6):655CrossRef Shehzad N, Zeeshan A, Ellahi R (2018) Electroosmotic flow of MHD power law Al2O3-PVC nanouid in a horizontal channel: couette-poiseuille flow model. Commun Theor Phys 69(6):655CrossRef
Zurück zum Zitat Shit GC, Ranjit NK, Sinha A (2016) Electro-magnetohydrodynamic flow of biofluid induced by peristaltic wave: a non-Newtonian model. J Bionic Eng 13(3):436–448CrossRef Shit GC, Ranjit NK, Sinha A (2016) Electro-magnetohydrodynamic flow of biofluid induced by peristaltic wave: a non-Newtonian model. J Bionic Eng 13(3):436–448CrossRef
Zurück zum Zitat Tiwari RK, Das MK (2007) Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf 50(9–10):2002–2018CrossRef Tiwari RK, Das MK (2007) Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf 50(9–10):2002–2018CrossRef
Zurück zum Zitat Tripathi D, Bég OA (2014) A study on peristaltic flow of nanofluids: application in drug delivery systems. Int J Heat Mass Transf 70:61–70CrossRef Tripathi D, Bég OA (2014) A study on peristaltic flow of nanofluids: application in drug delivery systems. Int J Heat Mass Transf 70:61–70CrossRef
Zurück zum Zitat Tripathi D, Yadav A, Bég OA (2017) Electro-kinetically driven peristaltic transport of viscoelastic physiological fluids through a finite length capillary: mathematical modeling. Math Biosci 283:155–168CrossRef Tripathi D, Yadav A, Bég OA (2017) Electro-kinetically driven peristaltic transport of viscoelastic physiological fluids through a finite length capillary: mathematical modeling. Math Biosci 283:155–168CrossRef
Zurück zum Zitat Tripathi D, Yadav A, Bég OA (2017) Electro-osmotic flow of couple stress fluids in a micro-channel propagated by peristalsis. Eur Phys J Plus 132(4):173CrossRef Tripathi D, Yadav A, Bég OA (2017) Electro-osmotic flow of couple stress fluids in a micro-channel propagated by peristalsis. Eur Phys J Plus 132(4):173CrossRef
Zurück zum Zitat Tripathi D, Sharma A, Bég OA (2018) Joule heating and buoyancy effects in electro-osmotic peristaltic transport of aqueous nanofluids through a microchannel with complex wave propagation. Adv Powder Technol 29(3):639–653CrossRef Tripathi D, Sharma A, Bég OA (2018) Joule heating and buoyancy effects in electro-osmotic peristaltic transport of aqueous nanofluids through a microchannel with complex wave propagation. Adv Powder Technol 29(3):639–653CrossRef
Zurück zum Zitat Wiedemann G (1852) First Quantitative study of electrical endosmose. PoggendorfsAnnalen 87:321–323 Wiedemann G (1852) First Quantitative study of electrical endosmose. PoggendorfsAnnalen 87:321–323
Zurück zum Zitat Yang C, Li D (1998) Analysis of electrokinetic effects on the liquid flow in rectangular microchannels. Colloids Surf A 143(2–3):339–353CrossRef Yang C, Li D (1998) Analysis of electrokinetic effects on the liquid flow in rectangular microchannels. Colloids Surf A 143(2–3):339–353CrossRef
Zurück zum Zitat Zhao G, Jian Y (2018) Heat transfer of the nanofluid in soft nanochannels under the effects of the electric and magnetic field. Powder Technol 338:734–743CrossRef Zhao G, Jian Y (2018) Heat transfer of the nanofluid in soft nanochannels under the effects of the electric and magnetic field. Powder Technol 338:734–743CrossRef
Zurück zum Zitat Zhao G, Jian Y, Li F (2016) Streaming potential and heat transfer of nanofluids in parallel plate microchannels. Colloids Surf A 498:239–247CrossRef Zhao G, Jian Y, Li F (2016) Streaming potential and heat transfer of nanofluids in parallel plate microchannels. Colloids Surf A 498:239–247CrossRef
Zurück zum Zitat Zhao G, Wang Z, Jian Y (2019) Heat transfer of the MHD nanofluid in porous microtubes under the electrokinetic effects. Int J Heat Mass Transf 130:821–830CrossRef Zhao G, Wang Z, Jian Y (2019) Heat transfer of the MHD nanofluid in porous microtubes under the electrokinetic effects. Int J Heat Mass Transf 130:821–830CrossRef
Metadaten
Titel
A Model for Electro-osmotic Flow of Pseudoplastic Nanofluids in Presence of Peristaltic Pumping: An Application to Smart Pumping in Energy Systems
verfasst von
J. Prakash
M. Gnaneswara Reddy
D. Tripathi
Abhishek Kumar Tiwari
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-33774-2_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.