Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2021

21.06.2021

Constitutive Model Parameter Identification for 6063 Aluminum Alloy Using Inverse Analysis Method for Extrusion Applications

verfasst von: Liang Xu, Zaiqi Yao, Jianpeng Liu, Zhigang Xue, Congchang Xu, Hong He, Luoxing Li

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hot compression tests of the 6063 aluminum alloy were conducted using a Gleeble-3500 thermal simulation testing machine, and the stress–strain curves at different temperatures and strain rates were obtained. The Kocks–Mecking–Estrin (KME) constitutive model was used to describe the rheological properties, and the initial parameters were identified based on experimental data. The final parameters were identified by the inverse analysis method. The KME model was embedded in a plane compression finite element model by the ABAQUS UHARD subroutine. The multidisciplinary optimization design software ISIGHT was used to integrate the finite element method simulation and relative error calculation. A minimal relative error between the experimental and simulated results was set as the objective, and a multi-island genetic optimization algorithm was used to identify the constitutive parameters. The results showed good agreement between the simulated and measured compression specimen shapes, and the global error between the numerical and measured force–displacement data was only 3.8%. The inverse analysis method was more accurate than the fitting method in identifying the constitutive parameters. The extrusion of a round bar was simulated, and both temperature and extrusion force were accurately predicted by using this constitutive model, further proving that the inverse analysis method used in the present study is effective in identifying the constitutive parameters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.H. Wu, Y. Liu, Y. Xiao, J.R. Xu and Q.Q. Lin, Study on Hot Deformation Behavior and Intrinsic Workability of 6063 Aluminum Alloys Using 3D Processing Map, J. Alloys. Compd., 2017, 713, p 212–221.CrossRef R.H. Wu, Y. Liu, Y. Xiao, J.R. Xu and Q.Q. Lin, Study on Hot Deformation Behavior and Intrinsic Workability of 6063 Aluminum Alloys Using 3D Processing Map, J. Alloys. Compd., 2017, 713, p 212–221.CrossRef
2.
Zurück zum Zitat H. Zhu, C. Qin, J.Q. Wang and F.J. Qi, Characterization and Simulation of Mechanical Behavior of 6063 Aluminum Alloy Thin-Walled Tubes, Adv. Mater. Res., 2011, 198, p 1500–1508.CrossRef H. Zhu, C. Qin, J.Q. Wang and F.J. Qi, Characterization and Simulation of Mechanical Behavior of 6063 Aluminum Alloy Thin-Walled Tubes, Adv. Mater. Res., 2011, 198, p 1500–1508.CrossRef
3.
Zurück zum Zitat Z.D. Xie, Y.J. Guan, J. Lin, J.Q. Zhai and L.H. Zhu, Constitutive Model of 6063 Aluminum Alloy Under the Ultrasonic Vibration Upsetting Based on Johnson-Cook Model, Ultrasonics, 2019, 96, p 1–9.CrossRef Z.D. Xie, Y.J. Guan, J. Lin, J.Q. Zhai and L.H. Zhu, Constitutive Model of 6063 Aluminum Alloy Under the Ultrasonic Vibration Upsetting Based on Johnson-Cook Model, Ultrasonics, 2019, 96, p 1–9.CrossRef
4.
Zurück zum Zitat T. Ye, L.X. Li, P.C. Guo, G. Xiao and Z.M. Chen, Effect of Aging Treatment on the Microstructure and flow Behavior of 6063 Aluminum Alloy Compressed Over a Wide Range of Strain Rate, Int. J. Impact. Eng., 2016, 90, p 72–80.CrossRef T. Ye, L.X. Li, P.C. Guo, G. Xiao and Z.M. Chen, Effect of Aging Treatment on the Microstructure and flow Behavior of 6063 Aluminum Alloy Compressed Over a Wide Range of Strain Rate, Int. J. Impact. Eng., 2016, 90, p 72–80.CrossRef
5.
Zurück zum Zitat H. Mecking and U.F. Kocks, Kinetics of Flow and Strain-Hardening, Acta. Metall., 1981, 29(11), p 1865–1875.CrossRef H. Mecking and U.F. Kocks, Kinetics of Flow and Strain-Hardening, Acta. Metall., 1981, 29(11), p 1865–1875.CrossRef
6.
Zurück zum Zitat J. Blaizot, T. Chaise, D. Nélias, M. Perez, S. Cazottes and P. Chaudet, Constitutive Model for Nickel Alloy 690 at Various Strain Rates and Temperatures, Int. J. Plast., 2016, 80, p 139–153.CrossRef J. Blaizot, T. Chaise, D. Nélias, M. Perez, S. Cazottes and P. Chaudet, Constitutive Model for Nickel Alloy 690 at Various Strain Rates and Temperatures, Int. J. Plast., 2016, 80, p 139–153.CrossRef
7.
Zurück zum Zitat H. Zhong, P.A. Rometsch, L.C. Cao and Y. Estrin, The Influence of Mg/Si Ratio and Cu Content on the Stretch Formability of 6xxx Aluminium Alloys, Mater. Sci. Eng. A, 2015, 651, p 688–697.CrossRef H. Zhong, P.A. Rometsch, L.C. Cao and Y. Estrin, The Influence of Mg/Si Ratio and Cu Content on the Stretch Formability of 6xxx Aluminium Alloys, Mater. Sci. Eng. A, 2015, 651, p 688–697.CrossRef
8.
Zurück zum Zitat P.T. Summers, A.P. Mouritz, S.W. Case and B.Y. Lattimer, Microstructure-Based Modeling of Residual Yield Strength and Strain Hardening After Fire Exposure of Aluminum Alloy 5083–H116, Mater. Sci. Eng. A, 2015, 632, p 14–28.CrossRef P.T. Summers, A.P. Mouritz, S.W. Case and B.Y. Lattimer, Microstructure-Based Modeling of Residual Yield Strength and Strain Hardening After Fire Exposure of Aluminum Alloy 5083–H116, Mater. Sci. Eng. A, 2015, 632, p 14–28.CrossRef
9.
Zurück zum Zitat A. Bahrami, A. Miroux and J. Sietsma, Modeling of Strain Hardening in the Aluminum Alloy AA6061, Metal. l. Mater. Trans. A, 2013, 44(5), p 2409–2417.CrossRef A. Bahrami, A. Miroux and J. Sietsma, Modeling of Strain Hardening in the Aluminum Alloy AA6061, Metal. l. Mater. Trans. A, 2013, 44(5), p 2409–2417.CrossRef
10.
Zurück zum Zitat K. Changela, H. Krishnaswamy and R. Kumar, Mechanical behavior and deformation kinetics of aluminum alloys processed through cryorolling and subsequent annealing, Metal l Mater Trans A, 2020, 51(2), p 648–666.CrossRef K. Changela, H. Krishnaswamy and R. Kumar, Mechanical behavior and deformation kinetics of aluminum alloys processed through cryorolling and subsequent annealing, Metal l Mater Trans A, 2020, 51(2), p 648–666.CrossRef
11.
Zurück zum Zitat L. Wang, F. Liu, Q. Zuo and C.F. Chen, Prediction of Flow Stress for N08028 Alloy Under Hot Working Conditions, Mater. Des., 2013, 47, p 737–745.CrossRef L. Wang, F. Liu, Q. Zuo and C.F. Chen, Prediction of Flow Stress for N08028 Alloy Under Hot Working Conditions, Mater. Des., 2013, 47, p 737–745.CrossRef
12.
Zurück zum Zitat N.Y. Zolotorevsky, A.N. Solonin, A.Y. Churyumov and V.S. Zolotorevsky, Study of Work Hardening of Quenched and Naturally Aged Al–Mg and Al–Cu Alloys, Mater. Sci. Eng. A, 2009, 502, p 111–117.CrossRef N.Y. Zolotorevsky, A.N. Solonin, A.Y. Churyumov and V.S. Zolotorevsky, Study of Work Hardening of Quenched and Naturally Aged Al–Mg and Al–Cu Alloys, Mater. Sci. Eng. A, 2009, 502, p 111–117.CrossRef
13.
Zurück zum Zitat K.K. Mehta, R.K. Mandal and A.K. Singh, Orientation Dependent Work Hardening Behavior of Cold Rolled and Solution Annealed Hastelloy C-276 alloy, Mater. Today., 2017, 4(2), p 277–284. K.K. Mehta, R.K. Mandal and A.K. Singh, Orientation Dependent Work Hardening Behavior of Cold Rolled and Solution Annealed Hastelloy C-276 alloy, Mater. Today., 2017, 4(2), p 277–284.
14.
Zurück zum Zitat A. Giuliano, D. Riccardo, R. Dario, G. Marcin and Z. Franco, The Role of Microstructure on the Tensile Plastic Behaviour of Ductile Iron GJS 400 Produced Through Different Cooling Rates—Part II: Tensile Modelling, Metals Open Access Metal. J., 2019, 9(9), p 1019–1030. A. Giuliano, D. Riccardo, R. Dario, G. Marcin and Z. Franco, The Role of Microstructure on the Tensile Plastic Behaviour of Ductile Iron GJS 400 Produced Through Different Cooling Rates—Part II: Tensile Modelling, Metals Open Access Metal. J., 2019, 9(9), p 1019–1030.
15.
Zurück zum Zitat H. Cho and T. Altan, Determination of Flow Stress and Interface Friction at Elevated Temperatures By Inverse Analysis Technique, J. Mater. Process. Technol., 2005, 170(1–2), p 64–70.CrossRef H. Cho and T. Altan, Determination of Flow Stress and Interface Friction at Elevated Temperatures By Inverse Analysis Technique, J. Mater. Process. Technol., 2005, 170(1–2), p 64–70.CrossRef
16.
Zurück zum Zitat G. Wang, L.X. Li, B. Liu and X.Q. Li, Constitutive Parameters Identification of 6061 Aluminum Alloy During Hot Deformation with Inverse Methods, Trans. Nonferr. Metal. SOC., 2011, 021(12), p 3011–3018.CrossRef G. Wang, L.X. Li, B. Liu and X.Q. Li, Constitutive Parameters Identification of 6061 Aluminum Alloy During Hot Deformation with Inverse Methods, Trans. Nonferr. Metal. SOC., 2011, 021(12), p 3011–3018.CrossRef
17.
Zurück zum Zitat J.M. Zhou, L.H. Qi and G.D. Chen, New Inverse Method for Identification of Constitutive Parameters, Trans. Nonferr. Metal. SOC., 2006, 016(1), p 148–152.CrossRef J.M. Zhou, L.H. Qi and G.D. Chen, New Inverse Method for Identification of Constitutive Parameters, Trans. Nonferr. Metal. SOC., 2006, 016(1), p 148–152.CrossRef
18.
Zurück zum Zitat M.T. Anaraki, M. Sanjari and A. Akbarzadeh, Modeling of High Temperature Theological Behavior of AZ61 Mg-Alloy Using Inverse Method and ANN, Mater. Des., 2008, 29(9), p 1701–1706.CrossRef M.T. Anaraki, M. Sanjari and A. Akbarzadeh, Modeling of High Temperature Theological Behavior of AZ61 Mg-Alloy Using Inverse Method and ANN, Mater. Des., 2008, 29(9), p 1701–1706.CrossRef
19.
Zurück zum Zitat C.S. Zhang, J. Ding, Y.Y. Dong, G.Q. Zhao, A.J. Gao and L.J. Wang, Identification of Friction Coefficients and Strain-Compensated Arrhenius-Type Constitutive Model by a Two-Stage Inverse Analysis Technique, Int. J. Mech. Sci., 2015, 98, p 195–204.CrossRef C.S. Zhang, J. Ding, Y.Y. Dong, G.Q. Zhao, A.J. Gao and L.J. Wang, Identification of Friction Coefficients and Strain-Compensated Arrhenius-Type Constitutive Model by a Two-Stage Inverse Analysis Technique, Int. J. Mech. Sci., 2015, 98, p 195–204.CrossRef
20.
Zurück zum Zitat T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura and J.J. Jonas, Dynamic and Post-Dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2014, 60, p 130–207.CrossRef T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura and J.J. Jonas, Dynamic and Post-Dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2014, 60, p 130–207.CrossRef
21.
Zurück zum Zitat Y. Estrin and H. Mecking, A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models, Acta. Metall., 1984, 32(1), p 57–70.CrossRef Y. Estrin and H. Mecking, A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models, Acta. Metall., 1984, 32(1), p 57–70.CrossRef
22.
Zurück zum Zitat Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32(4), p 1733–1759.CrossRef Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32(4), p 1733–1759.CrossRef
23.
Zurück zum Zitat A. Momeni, S. Kazemi and A. Bahrani, Hot Deformation Behavior of Microstructural Constituents in a Duplex Stainless Steel During High-Temperature Straining, Int. J. Min. Met. Mater., 2013, 020(010), p 953–960.CrossRef A. Momeni, S. Kazemi and A. Bahrani, Hot Deformation Behavior of Microstructural Constituents in a Duplex Stainless Steel During High-Temperature Straining, Int. J. Min. Met. Mater., 2013, 020(010), p 953–960.CrossRef
24.
Zurück zum Zitat S.K. Li, L.X. Li, Z.W. Liu and G. Wang, Effect of Extrusion Speed on Weld Strength of 6063 square tube, Trans. Nonferr. Metal. SOC., 2017, 29(9), p 1775–1784. S.K. Li, L.X. Li, Z.W. Liu and G. Wang, Effect of Extrusion Speed on Weld Strength of 6063 square tube, Trans. Nonferr. Metal. SOC., 2017, 29(9), p 1775–1784.
25.
Zurück zum Zitat E. Sinha and B.S. Minsker, Multiscale Island Injection Genetic Algorithms for Groundwater Remediation, Adv. Water. Resour., 2007, 30(9), p 1933–1942.CrossRef E. Sinha and B.S. Minsker, Multiscale Island Injection Genetic Algorithms for Groundwater Remediation, Adv. Water. Resour., 2007, 30(9), p 1933–1942.CrossRef
26.
Zurück zum Zitat F. Fereshteh-Saniee, I. Pillinger and P. Hartley, Friction Modelling for the Physical Simulation of the Bulk Metal Forming Processes, J. Mater. Process. Technol., 2004, 153–154, p 151–156.CrossRef F. Fereshteh-Saniee, I. Pillinger and P. Hartley, Friction Modelling for the Physical Simulation of the Bulk Metal Forming Processes, J. Mater. Process. Technol., 2004, 153–154, p 151–156.CrossRef
27.
Zurück zum Zitat W.R. Hou, Z.H. Zhang, J.X. Xie, Q.M. Ma and H.T. Gai, Temperature Inhomogeneity on Cross Section of Al Alloy Hollow Profile Based on Reverse Point Tracking Method, Chin. J. Nonferrous Metals, 2015, 25(7), p 1798–1807. W.R. Hou, Z.H. Zhang, J.X. Xie, Q.M. Ma and H.T. Gai, Temperature Inhomogeneity on Cross Section of Al Alloy Hollow Profile Based on Reverse Point Tracking Method, Chin. J. Nonferrous Metals, 2015, 25(7), p 1798–1807.
28.
Zurück zum Zitat L. Li, H. Zhang, J. Zhou, J. Duszczyk, G.Y. Li and Z.H. Zhong, Numerical and Experimental Study on the Extrusion Through a Porthole Die to Produce a Hollow Magnesium Profile with Longitudinal Weld Seams, Mater. Des., 2008, 29(6), p 1190–1198.CrossRef L. Li, H. Zhang, J. Zhou, J. Duszczyk, G.Y. Li and Z.H. Zhong, Numerical and Experimental Study on the Extrusion Through a Porthole Die to Produce a Hollow Magnesium Profile with Longitudinal Weld Seams, Mater. Des., 2008, 29(6), p 1190–1198.CrossRef
29.
Zurück zum Zitat W.H.V. Geertruyden, W.Z. Misiolek and P.T. Wang, Surface Grain Structure Development During Indirect Extrusion of 6xxx Aluminum Alloys, J. Mater. Sci., 2005, 40(14), p 3861–3863.CrossRef W.H.V. Geertruyden, W.Z. Misiolek and P.T. Wang, Surface Grain Structure Development During Indirect Extrusion of 6xxx Aluminum Alloys, J. Mater. Sci., 2005, 40(14), p 3861–3863.CrossRef
30.
Zurück zum Zitat S. Kaneko, K. Murakami and T. Sakai, Effect of the Extrusion Conditions on Microstructure Evolution of the Extruded Al–Mg–Si–Cu Alloy Rods, Mater. Sci. Eng. A, 2009, 500(1–2), p 8–15.CrossRef S. Kaneko, K. Murakami and T. Sakai, Effect of the Extrusion Conditions on Microstructure Evolution of the Extruded Al–Mg–Si–Cu Alloy Rods, Mater. Sci. Eng. A, 2009, 500(1–2), p 8–15.CrossRef
Metadaten
Titel
Constitutive Model Parameter Identification for 6063 Aluminum Alloy Using Inverse Analysis Method for Extrusion Applications
verfasst von
Liang Xu
Zaiqi Yao
Jianpeng Liu
Zhigang Xue
Congchang Xu
Hong He
Luoxing Li
Publikationsdatum
21.06.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05897-9

Weitere Artikel der Ausgabe 10/2021

Journal of Materials Engineering and Performance 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.