Skip to main content
Erschienen in: Metal Science and Heat Treatment 5-6/2017

30.09.2017 | FRICTION AND WEAR

Contact Wear of Steels Kh12M and R6M5

verfasst von: I. N. Stepankin

Erschienen in: Metal Science and Heat Treatment | Ausgabe 5-6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Comparative analysis of results of contact wear of steels Kh12M and R6M5 is performed with allowance for the structural evolution detected in experimental studies and by computer modeling. It is shown that metal matrix properties determine steel resistance to contact wear and the structural changes arising during wear.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N. M. Ryzhov, “Technological provision of contact fatigue resistance for carburized heat-resistant steel gear wheels,” Metalloved. Term. Obrab. Met., No. 7, 39 – 45 (2010). N. M. Ryzhov, “Technological provision of contact fatigue resistance for carburized heat-resistant steel gear wheels,” Metalloved. Term. Obrab. Met., No. 7, 39 – 45 (2010).
2.
Zurück zum Zitat R. Kisling and N. Lange, Nonmetallic Inclusions in Steel [Russian translation], Metallurgiya, Moscow (1968). R. Kisling and N. Lange, Nonmetallic Inclusions in Steel [Russian translation], Metallurgiya, Moscow (1968).
3.
Zurück zum Zitat L. Chunhui, Modeling the Behavior of Inclusions in Plastic Deformation of Steels, Author’s Abstract of Doctoral’s Thesis: 05.2001. Division of Materials Forming Department of Production Engineering Royal Institute of Technology, Stockholm (2001). L. Chunhui, Modeling the Behavior of Inclusions in Plastic Deformation of Steels, Author’s Abstract of Doctoral’s Thesis: 05.2001. Division of Materials Forming Department of Production Engineering Royal Institute of Technology, Stockholm (2001).
4.
Zurück zum Zitat V. S. Ivanova, Fatigue Failure of Metals [in Russian], Metallurgizdat, Moscow (1963). V. S. Ivanova, Fatigue Failure of Metals [in Russian], Metallurgizdat, Moscow (1963).
5.
Zurück zum Zitat N. J. Hardman, “Elliptic elastic inclusion in an infinite elastic plate,” Quart. J. Mechan. Appl. Math., 7(2), 226 – 230 (1954).CrossRef N. J. Hardman, “Elliptic elastic inclusion in an infinite elastic plate,” Quart. J. Mechan. Appl. Math., 7(2), 226 – 230 (1954).CrossRef
6.
Zurück zum Zitat V. M. Ken’ko, and I. N. Stepankin, “Consideration of structural features of tool steels during manufacture of a matrix of cold-upsetting equipment,” Lit’e Metallurgiya, Coll. Sci. Work Bel. Nats. Tekh. Univ., No. 4, 110 – 116 (2004). V. M. Ken’ko, and I. N. Stepankin, “Consideration of structural features of tool steels during manufacture of a matrix of cold-upsetting equipment,” Lit’e Metallurgiya, Coll. Sci. Work Bel. Nats. Tekh. Univ., No. 4, 110 – 116 (2004).
7.
Zurück zum Zitat L. S. Kremnev, “Features of tool material failure,” Metalloved. Term. Obrab. Met., No. 4, 17 – 22 (1994). L. S. Kremnev, “Features of tool material failure,” Metalloved. Term. Obrab. Met., No. 4, 17 – 22 (1994).
8.
Zurück zum Zitat L. S. Kremnev, “Critical stress intensity factor and fracture toughness of high-strength tool materials,” Metalloved. Term. Obrab. Met., No. 1, 30 – 35 (1996). L. S. Kremnev, “Critical stress intensity factor and fracture toughness of high-strength tool materials,” Metalloved. Term. Obrab. Met., No. 1, 30 – 35 (1996).
9.
Zurück zum Zitat V. Dal’ (ed.), Steel Behavior Under Applied Loads [Russian translation], Metallurgiya, Moscow (1983). V. Dal’ (ed.), Steel Behavior Under Applied Loads [Russian translation], Metallurgiya, Moscow (1983).
10.
Zurück zum Zitat A. P. Gulyaev, “Brittle failure resistance,” Metalloved. Term. Obrab. Met., No. 2, 21 – 26 (1992). A. P. Gulyaev, “Brittle failure resistance,” Metalloved. Term. Obrab. Met., No. 2, 21 – 26 (1992).
11.
Zurück zum Zitat S. Marphy and J. Whiteman, “The kinetics M2C precipitation in tempered,” Metal Sci. J., 4, 58 – 62 (1970).CrossRef S. Marphy and J. Whiteman, “The kinetics M2C precipitation in tempered,” Metal Sci. J., 4, 58 – 62 (1970).CrossRef
12.
Zurück zum Zitat S. E. Gurevich and L. D. Edidovich, Metal Fatigue and Fracture Toughness [in Russian], Nauka, Moscow (1974) S. E. Gurevich and L. D. Edidovich, Metal Fatigue and Fracture Toughness [in Russian], Nauka, Moscow (1974)
13.
Zurück zum Zitat A. M. Barinov and P. I. Andriashvili, “Precritical crack propagation in brittle materials with monotonic loading, “ Fiz. Khim. Mekh. Mater., No. 6, 21 – 24 (1088). A. M. Barinov and P. I. Andriashvili, “Precritical crack propagation in brittle materials with monotonic loading, “ Fiz. Khim. Mekh. Mater., No. 6, 21 – 24 (1088).
14.
Zurück zum Zitat V. Z. Partnon and E. M. Morozov, Elastoplastic Failure Mechanics [in Russian], Nauka, Moscow (1974). V. Z. Partnon and E. M. Morozov, Elastoplastic Failure Mechanics [in Russian], Nauka, Moscow (1974).
15.
Zurück zum Zitat A. P. Gulyaev, “Strength,” Metalloved. Term. Obrab. Met., No. 7, 2 – 6 (1993). A. P. Gulyaev, “Strength,” Metalloved. Term. Obrab. Met., No. 7, 2 – 6 (1993).
16.
Zurück zum Zitat S. Kotsanda, Metal Fatigue Cracking [in Russian], Metallurgiya, Moscow (1990). S. Kotsanda, Metal Fatigue Cracking [in Russian], Metallurgiya, Moscow (1990).
17.
Zurück zum Zitat T. Ekobori, Solid Physics and Mechanics and Failure [in Russian], Metallurgiya, Moscow (1971). T. Ekobori, Solid Physics and Mechanics and Failure [in Russian], Metallurgiya, Moscow (1971).
18.
Zurück zum Zitat V. M. Ken’ko, V. V. Pinchuk, and I. N. Stepankin, “Optimum technology for preparing cold-upsetting dies,” Kuzn.-Shtamp. Proizvod., No. 11, 22 – 24 (1998). V. M. Ken’ko, V. V. Pinchuk, and I. N. Stepankin, “Optimum technology for preparing cold-upsetting dies,” Kuzn.-Shtamp. Proizvod., No. 11, 22 – 24 (1998).
19.
Zurück zum Zitat Yu. M. Skrynchenko and L. A. Poznyak, Tool Steel Operating Capacity and Properties [in Russian], Naukova Dumka, Kiev (1979). Yu. M. Skrynchenko and L. A. Poznyak, Tool Steel Operating Capacity and Properties [in Russian], Naukova Dumka, Kiev (1979).
20.
Zurück zum Zitat Yu. A. Geller, Tool Steels: Handbook [in Russian], Metallurgiya, Moscow (1984). Yu. A. Geller, Tool Steels: Handbook [in Russian], Metallurgiya, Moscow (1984).
21.
Zurück zum Zitat G. N. Savin, Stress Distribution Around a Hole [in Russian], Naukova Dumka, Kiev (1968). G. N. Savin, Stress Distribution Around a Hole [in Russian], Naukova Dumka, Kiev (1968).
22.
Zurück zum Zitat I. Billingham, Upsetting and Other Forging Methods [Russian translation], Mashgiz, Moscow (1960). I. Billingham, Upsetting and Other Forging Methods [Russian translation], Mashgiz, Moscow (1960).
23.
Zurück zum Zitat I. N. Stepankin, E. P. Pozdnyakov, V. M. Ken’ko, I. A. Pankratov, and L. V. Stepankina, “Belarus Patent No. 8620 MPK (2009) G 01 N 3/00. Device for material contact fatigue and wear testing,” Afits. Byul., Nats. Tsentr Intelekt. Ulast., No. 3, 260 (2012), claim 23.11.2011. I. N. Stepankin, E. P. Pozdnyakov, V. M. Ken’ko, I. A. Pankratov, and L. V. Stepankina, “Belarus Patent No. 8620 MPK (2009) G 01 N 3/00. Device for material contact fatigue and wear testing,” Afits. Byul., Nats. Tsentr Intelekt. Ulast., No. 3, 260 (2012), claim 23.11.2011.
24.
Zurück zum Zitat Ali Beheshti and M. M. Khonsari, “On the prediction of fatigue crack initiation in rolling/sliding contacts with provision for loading sequence effect,” Tribology Int., 44, 1620 – 1628 (2011).CrossRef Ali Beheshti and M. M. Khonsari, “On the prediction of fatigue crack initiation in rolling/sliding contacts with provision for loading sequence effect,” Tribology Int., 44, 1620 – 1628 (2011).CrossRef
25.
Zurück zum Zitat I. L. Khefets, “Thermodynamic treatment of a cold-upsettting and thread-rolling tool,” Kuzn.-Shtamp. Proizvod., No. 11, 37 – 38 (1983). I. L. Khefets, “Thermodynamic treatment of a cold-upsettting and thread-rolling tool,” Kuzn.-Shtamp. Proizvod., No. 11, 37 – 38 (1983).
26.
Zurück zum Zitat A. T. Evtushenko, “Study of the effect of structure, heat treatment and properties of forging steel for cold resistance,” Polzunovskii Vestn., No. 1 – 2, 242 – 249 (1983). A. T. Evtushenko, “Study of the effect of structure, heat treatment and properties of forging steel for cold resistance,” Polzunovskii Vestn., No. 1 – 2, 242 – 249 (1983).
27.
Zurück zum Zitat A. P. Gulyaev, “High-speed steel theory,” Metalloved. Term. Obrab. Met., No. 11, 27 – 32 (1998). A. P. Gulyaev, “High-speed steel theory,” Metalloved. Term. Obrab. Met., No. 11, 27 – 32 (1998).
28.
Zurück zum Zitat I. Artinger, Too; Steel and Their Heat Treatment: Handbook [Russian translation], Metallurgiya, Moscow (1982). I. Artinger, Too; Steel and Their Heat Treatment: Handbook [Russian translation], Metallurgiya, Moscow (1982).
29.
Zurück zum Zitat A. P. Gulyaev, “Steel cold treatment,” Metalloved. Term. Obrab. Met., No. 11, 19 – 26 (1998). A. P. Gulyaev, “Steel cold treatment,” Metalloved. Term. Obrab. Met., No. 11, 19 – 26 (1998).
30.
Zurück zum Zitat A. V. Makarov, Improvement of Iron Alloy Wear Resistance Due to Creating Metastable and Nanocrystalline Structures, Author’s Abstract of Candidate’s Thesis [in Russian], Chelyabinsk (2009). A. V. Makarov, Improvement of Iron Alloy Wear Resistance Due to Creating Metastable and Nanocrystalline Structures, Author’s Abstract of Candidate’s Thesis [in Russian], Chelyabinsk (2009).
31.
Zurück zum Zitat M. Yu. Semenov, I. N. Gavrilin, and M. Yu. Ryzhova, “Analysis of methods for gear wheel strengthening of heat-resistant materials based on a calculation method,” Metalloved. Term. Obrab. Met., No. 1, 42 – 46 (2014). M. Yu. Semenov, I. N. Gavrilin, and M. Yu. Ryzhova, “Analysis of methods for gear wheel strengthening of heat-resistant materials based on a calculation method,” Metalloved. Term. Obrab. Met., No. 1, 42 – 46 (2014).
32.
Zurück zum Zitat B. Alfredsson, A study on Contact Fatigue Mechanisms, Author’s Abstract of Doctoral’s Thesis, Department of Solid Mechanics Royal Institute of Technology, Stockholm (2000). B. Alfredsson, A study on Contact Fatigue Mechanisms, Author’s Abstract of Doctoral’s Thesis, Department of Solid Mechanics Royal Institute of Technology, Stockholm (2000).
33.
Zurück zum Zitat C. Longching, C. Qing, and S. Eryu, “Study on initiation and propagation angles of sub-surface cracks in GCr15 bearing steel under rolling contact,” Wear, 133, 205 – 218 (1989).CrossRef C. Longching, C. Qing, and S. Eryu, “Study on initiation and propagation angles of sub-surface cracks in GCr15 bearing steel under rolling contact,” Wear, 133, 205 – 218 (1989).CrossRef
Metadaten
Titel
Contact Wear of Steels Kh12M and R6M5
verfasst von
I. N. Stepankin
Publikationsdatum
30.09.2017
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 5-6/2017
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-017-0149-2

Weitere Artikel der Ausgabe 5-6/2017

Metal Science and Heat Treatment 5-6/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.