Skip to main content

2006 | OriginalPaper | Buchkapitel

18. Continuum Constitutive Modeling

verfasst von : Shoji Imatani

Erschienen in: Springer Handbook of Materials Measurement Methods

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Constitutive models play an important role when characterizing structural materials in order to evaluate their thermomechanical behavior. The experimental characterization of materials (using techniques discussed in Part C of this Handbook) involves measuring and controlling macroscopic variables such as force, displacement and temperature. Concise models are also of great use when characterizing the continuous media used to create structural materials, because phenomenological modeling can be carried out regardless of the internal material structure. This continuum modeling usually successfully describes the behavior of various classes of material under complex boundary conditions.
This chapter presents phenomenological constitutive models from both macroscopic and microscopic viewpoints:
  • Starting from viscoplasticity models, model performance is reviewed in order to predict the mechanical response under creep–plasticity interaction conditions, taking into account internal state variables.
  • Material anisotropy is discussed; mathematical modeling of initial anisotropy and induced anisotropy based on the representation theorem for higher order isotropic tensors is presented.
  • Thermomechanical coupling phenomena involving phase transformations predominate in engineering applications of heat treatment and material processing. A continuum model is presented that takes into account the way structural rearrangement evolves in materials.
  • Finally, microscopic analysis based on crystal plasticity, which relates the resolved shear stress to crystal slip, is applied to describe the inhomogeneous deformation process in polycrystalline materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
18.1.
Zurück zum Zitat L. E. Malvern: Introduction to the Mechanics of a Continuous Medium (Prentice-Hall, Englewood 1969) L. E. Malvern: Introduction to the Mechanics of a Continuous Medium (Prentice-Hall, Englewood 1969)
18.2.
Zurück zum Zitat P. Perzyna: Thermodynamic theory of viscoplasticity, Adv. Appl. Mech. 11, 313–354 (1971)CrossRef P. Perzyna: Thermodynamic theory of viscoplasticity, Adv. Appl. Mech. 11, 313–354 (1971)CrossRef
18.3.
Zurück zum Zitat A. K. Miller: Unified Constitutive Equations for Creep and Plasticity (Elsevier, London 1987) A. K. Miller: Unified Constitutive Equations for Creep and Plasticity (Elsevier, London 1987)
18.4.
Zurück zum Zitat A. S. Krausz, K. Krausz: Unified Constitutive Laws of Plastic Deformation (Academic, San Diego 1996) A. S. Krausz, K. Krausz: Unified Constitutive Laws of Plastic Deformation (Academic, San Diego 1996)
18.5.
Zurück zum Zitat J. Lemaitre, J. L. Chaboche: Mechanics of Solid Materials (Cambridge Univ. Press, Cambridge 1994) J. Lemaitre, J. L. Chaboche: Mechanics of Solid Materials (Cambridge Univ. Press, Cambridge 1994)
18.6.
Zurück zum Zitat G. A. Maugin: Thermomechanics of Plasticity and Fracture (Cambridge Univ. Press, Cambridge 1995) G. A. Maugin: Thermomechanics of Plasticity and Fracture (Cambridge Univ. Press, Cambridge 1995)
18.7.
Zurück zum Zitat A. K. Miller: An inelastic constitutive model for monotonic, cyclic, and creep deformation, Trans ASME J. Eng. Mater. Technol. 98, 97–105 (1976)CrossRef A. K. Miller: An inelastic constitutive model for monotonic, cyclic, and creep deformation, Trans ASME J. Eng. Mater. Technol. 98, 97–105 (1976)CrossRef
18.8.
Zurück zum Zitat M. C. M. Liu, E. Krempl: A uniaxial viscoplastic model based on total strain and overstress, J. Mech. Phys. Solids 27, 377–391 (1979)CrossRef M. C. M. Liu, E. Krempl: A uniaxial viscoplastic model based on total strain and overstress, J. Mech. Phys. Solids 27, 377–391 (1979)CrossRef
18.9.
Zurück zum Zitat S. R. Bodner, A. Merzer: Viscoplastic constitutive equations for copper with strain rate history and temperature effects, Trans. ASME J. Appl. Mech. 100, 388–394 (1978) S. R. Bodner, A. Merzer: Viscoplastic constitutive equations for copper with strain rate history and temperature effects, Trans. ASME J. Appl. Mech. 100, 388–394 (1978)
18.10.
Zurück zum Zitat Y. Estrin, H. Mecking: An extension of the Bodner-Partom model of plastic deformation, Int. J. Plasticity 1, 73–85 (1985) Y. Estrin, H. Mecking: An extension of the Bodner-Partom model of plastic deformation, Int. J. Plasticity 1, 73–85 (1985)
18.11.
Zurück zum Zitat K. C. Valanis: A theory of viscoplasticity without a yield surface, Arch. Mech. 23, 517–551 (1971) K. C. Valanis: A theory of viscoplasticity without a yield surface, Arch. Mech. 23, 517–551 (1971)
18.12.
Zurück zum Zitat D. Kujawski, Z. Mroz: A viscoplastic material model and its application to cyclic loading, Acta Mech. 36, 213–230 (1980)CrossRef D. Kujawski, Z. Mroz: A viscoplastic material model and its application to cyclic loading, Acta Mech. 36, 213–230 (1980)CrossRef
18.13.
Zurück zum Zitat Y. F. Dafalias, E. P. Popov: A model for nonlinear hardening materials for complex loading, Acta Mech. 21, 173–192 (1975)CrossRef Y. F. Dafalias, E. P. Popov: A model for nonlinear hardening materials for complex loading, Acta Mech. 21, 173–192 (1975)CrossRef
18.14.
Zurück zum Zitat N. Ohno: A constitutive model for cyclic plasticity with a nonlinear strain region, Trans. ASME, J. Appl. Mech. 49, 721–727 (1982)CrossRef N. Ohno: A constitutive model for cyclic plasticity with a nonlinear strain region, Trans. ASME, J. Appl. Mech. 49, 721–727 (1982)CrossRef
18.15.
Zurück zum Zitat O. Watanabe, S. N. Atluri: Constitutive modeling of cyclic plasticity and creep using internal time concept, Int. J. Plasticity 2, 107–134 (1986)CrossRef O. Watanabe, S. N. Atluri: Constitutive modeling of cyclic plasticity and creep using internal time concept, Int. J. Plasticity 2, 107–134 (1986)CrossRef
18.16.
Zurück zum Zitat T. Inoue, N. Ohno, A. Suzuki, T. Igari: Evaluation of inelastic constitutive models under plasticity-creep interaction for 2.1/4Cr-1Mo steel, Nucl. Eng. Des. 114, 295–309 (1989)CrossRef T. Inoue, N. Ohno, A. Suzuki, T. Igari: Evaluation of inelastic constitutive models under plasticity-creep interaction for 2.1/4Cr-1Mo steel, Nucl. Eng. Des. 114, 295–309 (1989)CrossRef
18.17.
Zurück zum Zitat T. Inoue, F. Yoshida, N. Ohno, M. Kawai, Y. Niitsu, S. Imatani: Evaluation of inelastic constitutive models under plasticity-creep interaction in multiaxial stress state, Nucl. Eng. Des. 126, 1–11 (1991)CrossRef T. Inoue, F. Yoshida, N. Ohno, M. Kawai, Y. Niitsu, S. Imatani: Evaluation of inelastic constitutive models under plasticity-creep interaction in multiaxial stress state, Nucl. Eng. Des. 126, 1–11 (1991)CrossRef
18.18.
Zurück zum Zitat T. Inoue, S. Imatani, Y. Fukuda, K. Fujiyama, K. Aoto, K. Tamura: Inelastic stress-strain response for notched specimen of 2.1/4Cr-1Mo steel at 600°C, Nucl. Eng. Des. 150, 129–139 (1994)CrossRef T. Inoue, S. Imatani, Y. Fukuda, K. Fujiyama, K. Aoto, K. Tamura: Inelastic stress-strain response for notched specimen of 2.1/4Cr-1Mo steel at 600°C, Nucl. Eng. Des. 150, 129–139 (1994)CrossRef
18.19.
Zurück zum Zitat A. J. M. Spencer: Theory of invariants. In: Continuum Physics, Vol. 1, ed. by C. A. Eringen (Academic, New York 1971) pp. 239–353 A. J. M. Spencer: Theory of invariants. In: Continuum Physics, Vol. 1, ed. by C. A. Eringen (Academic, New York 1971) pp. 239–353
18.20.
Zurück zum Zitat A. J. M. Spencer: Isotropic invariants of tensor functions. In: Application of Tensor Functions in Solid Mechanics, CISM Courses and Lectures, Vol. 292, ed. by J. P. Boehler (Springer, Berlin, Heidelberg 1987) pp. 141–169 A. J. M. Spencer: Isotropic invariants of tensor functions. In: Application of Tensor Functions in Solid Mechanics, CISM Courses and Lectures, Vol. 292, ed. by J. P. Boehler (Springer, Berlin, Heidelberg 1987) pp. 141–169
18.21.
Zurück zum Zitat R. Hill: The Mathematical Theory of Plasticity (Oxford Univ. Press, Oxford 1950) R. Hill: The Mathematical Theory of Plasticity (Oxford Univ. Press, Oxford 1950)
18.22.
Zurück zum Zitat Y. Tomita, A. Shindo: Onset and growth of wrinkles in thin square plates subjected to diagonal tension, Int. J. Mech. Sci. 30, 921–931 (1988)CrossRef Y. Tomita, A. Shindo: Onset and growth of wrinkles in thin square plates subjected to diagonal tension, Int. J. Mech. Sci. 30, 921–931 (1988)CrossRef
18.23.
Zurück zum Zitat S. Imatani, T. Saitoh, K. Yamaguchi: Finite element analysis of out-of-plane deformation in laminated sheet metals based on an anisotropic plasticity model, Mater. Sci. Res. Int. 1, 89–94 (1995) S. Imatani, T. Saitoh, K. Yamaguchi: Finite element analysis of out-of-plane deformation in laminated sheet metals based on an anisotropic plasticity model, Mater. Sci. Res. Int. 1, 89–94 (1995)
18.24.
Zurück zum Zitat A. Phillips, R. Kasper: On the foundation of thermoplasticity; an experimental investigation, Trans. ASME J. Appl. Mech. 40, 891–896 (1973)CrossRef A. Phillips, R. Kasper: On the foundation of thermoplasticity; an experimental investigation, Trans. ASME J. Appl. Mech. 40, 891–896 (1973)CrossRef
18.25.
Zurück zum Zitat E. Shiratori, K. Ikegami: Studies of the anisotropic yield condition, J. Mech. Phys. Solids 17, 473–491 (1969)CrossRef E. Shiratori, K. Ikegami: Studies of the anisotropic yield condition, J. Mech. Phys. Solids 17, 473–491 (1969)CrossRef
18.26.
Zurück zum Zitat A. Baltov, A. Sawczuk: A rule of anisotropic hardening, Acta Mech. 1, 81–92 (1965)CrossRef A. Baltov, A. Sawczuk: A rule of anisotropic hardening, Acta Mech. 1, 81–92 (1965)CrossRef
18.27.
Zurück zum Zitat J. F. Williams, N. L. Svensson: A rationally based yield criterion for workhardening materials, Meccanica 6, 104–114 (1971)CrossRef J. F. Williams, N. L. Svensson: A rationally based yield criterion for workhardening materials, Meccanica 6, 104–114 (1971)CrossRef
18.28.
Zurück zum Zitat D. W. A. Rees: The theory of scalar plastic deformation function, Z. Angew. Math. Mech. 63, 217–228 (1983)CrossRef D. W. A. Rees: The theory of scalar plastic deformation function, Z. Angew. Math. Mech. 63, 217–228 (1983)CrossRef
18.29.
Zurück zum Zitat D. C. Drucker: Relation of experiments to mathematical theories of plasticity, Trans. ASME, J. Appl. Mech. 16, 349–357 (1949) D. C. Drucker: Relation of experiments to mathematical theories of plasticity, Trans. ASME, J. Appl. Mech. 16, 349–357 (1949)
18.30.
Zurück zum Zitat P. Mazilu, A. Meyers: Yield surface description of isotropic materials after cold prestrain, Ing. Archiv. 55, 213–220 (1985)CrossRef P. Mazilu, A. Meyers: Yield surface description of isotropic materials after cold prestrain, Ing. Archiv. 55, 213–220 (1985)CrossRef
18.31.
Zurück zum Zitat S. Imatani, M. Teraura, T. Inoue: An inelastic constitutive model accounting for deformation-induced anisotropy, Trans. JSME A 55, 2042–2048 (1989) S. Imatani, M. Teraura, T. Inoue: An inelastic constitutive model accounting for deformation-induced anisotropy, Trans. JSME A 55, 2042–2048 (1989)
18.32.
Zurück zum Zitat N. Ohno, J. D. Wang: Kinematic hardening rules with critical state of dynamic recovery, Int. J. Plasticity 9, 375–390 (1993)CrossRef N. Ohno, J. D. Wang: Kinematic hardening rules with critical state of dynamic recovery, Int. J. Plasticity 9, 375–390 (1993)CrossRef
18.33.
Zurück zum Zitat T. Inoue, Z. G. Wang: Coupling between stresses, temperature and metallic structures during processes involving phase transformation, Mater. Sci. Tech. 1, 845–850 (1985) T. Inoue, Z. G. Wang: Coupling between stresses, temperature and metallic structures during processes involving phase transformation, Mater. Sci. Tech. 1, 845–850 (1985)
18.34.
Zurück zum Zitat R. M. Bowen: Theory of mixture. In: Continuum Physics, Vol. 3, ed. by C. A. Eringen (Academic, New York 1976) pp. 1–127 R. M. Bowen: Theory of mixture. In: Continuum Physics, Vol. 3, ed. by C. A. Eringen (Academic, New York 1976) pp. 1–127
18.35.
Zurück zum Zitat T. Inoue, T. Yamaguchi, Z. G. Wang: Stresses and phase transformations occurring in quenching of carburized steel gear wheel, Mater. Sci. Tech. 1, 872–876 (1985) T. Inoue, T. Yamaguchi, Z. G. Wang: Stresses and phase transformations occurring in quenching of carburized steel gear wheel, Mater. Sci. Tech. 1, 872–876 (1985)
18.36.
Zurück zum Zitat P. Ding, T. Inoue, S. Imatani, D. Y. Ju, E. de Vries: Simulation of the forging process incorporating strain-induced phase transformation using the finite volume method (Part I: Basic theory and numerical methodology), Mater. Sci. Res. Int. 7, 19–26 (2001) P. Ding, T. Inoue, S. Imatani, D. Y. Ju, E. de Vries: Simulation of the forging process incorporating strain-induced phase transformation using the finite volume method (Part I: Basic theory and numerical methodology), Mater. Sci. Res. Int. 7, 19–26 (2001)
18.37.
Zurück zum Zitat S. Bhattacharyya, G. Kehl: Isothermal transformation of austenite under externally applied tensile stress, Trans. ASM 47, 351–379 (1955) S. Bhattacharyya, G. Kehl: Isothermal transformation of austenite under externally applied tensile stress, Trans. ASM 47, 351–379 (1955)
18.38.
Zurück zum Zitat M. Fujita, M. Suzuki: The effect of high pressure on the isothermal transformation in high purity Fe-C alloys and commercial steels, Trans. ISIJ 14, 44–53 (1974) M. Fujita, M. Suzuki: The effect of high pressure on the isothermal transformation in high purity Fe-C alloys and commercial steels, Trans. ISIJ 14, 44–53 (1974)
18.39.
Zurück zum Zitat S. V. Radcliffe, M. Schatz: The effect of high pressure on the martensitic reaction in iron-carbon alloys, Acta. Metall. Mater. 10, 201–207 (1962)CrossRef S. V. Radcliffe, M. Schatz: The effect of high pressure on the martensitic reaction in iron-carbon alloys, Acta. Metall. Mater. 10, 201–207 (1962)CrossRef
18.40.
Zurück zum Zitat W. A. Johnson, F. R. Mehl: Reaction kinetics in processes of nucleation and growth, Trans. AIME 135, 416–458 (1939) W. A. Johnson, F. R. Mehl: Reaction kinetics in processes of nucleation and growth, Trans. AIME 135, 416–458 (1939)
18.41.
Zurück zum Zitat C. L. Magee: The nucleation of martensite. In: Phase Transformation, ed. by H. I. Aaronson (ASM Int., Metals Park, OH 1968) C. L. Magee: The nucleation of martensite. In: Phase Transformation, ed. by H. I. Aaronson (ASM Int., Metals Park, OH 1968)
18.42.
Zurück zum Zitat K. Shinagawa, H. Nishikawa, T. Ishikawa, Y. Hosoi: Deformation-induced martensitic transformation in type 304 stainless steel during cold upsetting, Iron Steel 3, 156–162 (1990) K. Shinagawa, H. Nishikawa, T. Ishikawa, Y. Hosoi: Deformation-induced martensitic transformation in type 304 stainless steel during cold upsetting, Iron Steel 3, 156–162 (1990)
18.43.
Zurück zum Zitat P. Ding, D. Y. Ju, T. Inoue, S. Imatani, E. de Vries: Simulation of the forging process incorporating strain-induced phase transformation using the finite volume method (Part II: Effects of strain rate on structural change and mechanical behavior), Mater. Sci. Res. Int. 7, 27–33 (2001) P. Ding, D. Y. Ju, T. Inoue, S. Imatani, E. de Vries: Simulation of the forging process incorporating strain-induced phase transformation using the finite volume method (Part II: Effects of strain rate on structural change and mechanical behavior), Mater. Sci. Res. Int. 7, 27–33 (2001)
18.44.
Zurück zum Zitat G. I. Taylor: Plastic strain in metals, J. Inst. Metals 62, 307–324 (1938) G. I. Taylor: Plastic strain in metals, J. Inst. Metals 62, 307–324 (1938)
18.45.
Zurück zum Zitat R. J. Asaro: Micromechanics of crystals and polycrystals, Adv. Appl. Mech. 23, 1–115 (1983)CrossRef R. J. Asaro: Micromechanics of crystals and polycrystals, Adv. Appl. Mech. 23, 1–115 (1983)CrossRef
18.46.
Zurück zum Zitat J. W. Hutchinson: Bounds and self-consistent estimates for creep of polycrystalline materials, Proc. R. Soc. London A 348, 101–127 (1976)CrossRef J. W. Hutchinson: Bounds and self-consistent estimates for creep of polycrystalline materials, Proc. R. Soc. London A 348, 101–127 (1976)CrossRef
18.47.
Zurück zum Zitat J. R. Rice: Inelastic constitutive relations for solids, J. Mech. Phys. Solids 19, 433–455 (1971)CrossRef J. R. Rice: Inelastic constitutive relations for solids, J. Mech. Phys. Solids 19, 433–455 (1971)CrossRef
18.48.
Zurück zum Zitat T. Inoue, S. Torizuka, K. Nagai, K. Tsuzaki, T. Ohashi: Effect of plastic strain on grain size of ferrite transformed from deformed austenite in Si-Mn steel, Mater. Sci. Tech. 17, 1580–1588 (2001) T. Inoue, S. Torizuka, K. Nagai, K. Tsuzaki, T. Ohashi: Effect of plastic strain on grain size of ferrite transformed from deformed austenite in Si-Mn steel, Mater. Sci. Tech. 17, 1580–1588 (2001)
18.49.
Zurück zum Zitat E. van der Giessen, V. Tvergaard: A creep rupture model accounting for cavitation at sliding grain boundaries, Int. J. Fracture 48, 153–178 (1991)CrossRef E. van der Giessen, V. Tvergaard: A creep rupture model accounting for cavitation at sliding grain boundaries, Int. J. Fracture 48, 153–178 (1991)CrossRef
18.50.
Zurück zum Zitat G. Beer: An isoparametric joint/interface element for finite element analysis, Int. J. Num. Meth. Eng. 21, 585–600 (1985)CrossRef G. Beer: An isoparametric joint/interface element for finite element analysis, Int. J. Num. Meth. Eng. 21, 585–600 (1985)CrossRef
18.51.
Zurück zum Zitat R. Kawakami, S. Imatani, R. Maeda: Effects of crystal grain and grain boundary sliding on the deformation of polycrystal, J. Soc. Mater. Sci. Jpn. 52, 112–118 (2003) R. Kawakami, S. Imatani, R. Maeda: Effects of crystal grain and grain boundary sliding on the deformation of polycrystal, J. Soc. Mater. Sci. Jpn. 52, 112–118 (2003)
Metadaten
Titel
Continuum Constitutive Modeling
verfasst von
Shoji Imatani
Copyright-Jahr
2006
DOI
https://doi.org/10.1007/978-3-540-30300-8_18

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.