Skip to main content
Erschienen in: Journal of Applied Mathematics and Computing 1-2/2021

04.08.2020 | Original Research

Controllability results for fractional semilinear delay control systems

verfasst von: Anurag Shukla, Rohit Patel

Erschienen in: Journal of Applied Mathematics and Computing | Ausgabe 1-2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, we have presented the controllability relationship between the semilinear control system of fractional order (1, 2] with delay and that of the semilinear control system without delay. Suppose X and U be Hilbert spaces which are separable and \(Z=L_2[0,b;X],\;Z_h=L_2[-h,b;X],\;0\le h\le b\) and \(Y=L_2[0,b;U]\) be the function spaces. Let the semilinear control system of fractional order with delay as
$$\begin{aligned} ^CD_\tau ^\alpha z(\tau )= & {} Az(\tau )+Bv(\tau )+g(\tau ,z(\tau -h)),\;0\le \tau \le b;\\ z_0(\theta )= & {} \phi (\theta ),\;\;\;\; \theta \in [-h,0]\\ z'(0)= & {} z_0. \end{aligned}$$
where \(1<\alpha \le 2\), fractional Caputo derivative is denoted as \(^CD_{\tau }^\alpha \), time constant b is positive and finite.\(A:D(A)\subseteq X\rightarrow X\) is a operator which is linear and closed having densed domain X and A is the infinitesimal generator of solution operator \(\{C_\alpha (\tau )\}_{\tau \ge 0}\). The control function is denoted by \(v(\tau )\) and defined as \(v:[0,b]\rightarrow U\). The continuous state variable \(z(\tau )\in Z\), \(\phi \in L_2[-h,0;X]\). The operator \(B:Y\rightarrow Z\) is linear and bounded. The function \(g:[0,b]\times X\rightarrow V\) is purely nonlinear and satisfies Lipschitz continuity. We assumed that the fractional semilinear system without delay is approximate/exact controllable and by imposing some conditions on the range of the nonlinear term, we obtained the controllability results of the fractional semilinear system with delay. Approximate controllability of proposed problem is discussed under three different sets of assumptions. Exact controllability of proposed problem is also discussed. Finally an example is given to understand the theoretical results in better manner.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kalman, R.E.: Controllability of linear systems. Contrib. Differ. Equ. 1, 190–213 (1963)MathSciNet Kalman, R.E.: Controllability of linear systems. Contrib. Differ. Equ. 1, 190–213 (1963)MathSciNet
2.
Zurück zum Zitat Curtain, R.F., Zwart, H.J.: An Introduction to Infinite Dimensional Linear Systems Theory. Springer, New York (1995)CrossRef Curtain, R.F., Zwart, H.J.: An Introduction to Infinite Dimensional Linear Systems Theory. Springer, New York (1995)CrossRef
3.
Zurück zum Zitat Barnett, Stephen: Introduction to Mathematical Control Theory. Clarendon Press, Oxford (1975)MATH Barnett, Stephen: Introduction to Mathematical Control Theory. Clarendon Press, Oxford (1975)MATH
4.
Zurück zum Zitat Zhou, H.X.: Approximate controllability for a class of semilinear abstract equations. SIAM J. Control Optim. 21(4), 551–565 (1983). (84h:93015)MathSciNetCrossRef Zhou, H.X.: Approximate controllability for a class of semilinear abstract equations. SIAM J. Control Optim. 21(4), 551–565 (1983). (84h:93015)MathSciNetCrossRef
5.
Zurück zum Zitat Wang, J., Zhou, Y.: Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal. Real World Appl. 12(6), 3642–3653 (2011)MathSciNetCrossRef Wang, J., Zhou, Y.: Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal. Real World Appl. 12(6), 3642–3653 (2011)MathSciNetCrossRef
6.
Zurück zum Zitat Jeet, K., Sukavanam, N.: Approximate controllability of nonlocal and impulsive neutral integro-differential equations using the resolvent operator theory and an approximating technique. Appl. Math. Comput. 364, 124690 (2020)MathSciNetMATH Jeet, K., Sukavanam, N.: Approximate controllability of nonlocal and impulsive neutral integro-differential equations using the resolvent operator theory and an approximating technique. Appl. Math. Comput. 364, 124690 (2020)MathSciNetMATH
7.
Zurück zum Zitat Naito, K.: Controllability of semilinear control systems dominated by the linear part. SIAM J. Control Optim. 25, 715–722 (1987)MathSciNetCrossRef Naito, K.: Controllability of semilinear control systems dominated by the linear part. SIAM J. Control Optim. 25, 715–722 (1987)MathSciNetCrossRef
8.
Zurück zum Zitat Naito, K., Park, J.Y.: Approximate Controllability for Trajectories of a Delay Volterra Control system. J. Optim. Theory Appl. 61(2), 271–279 (1989)MathSciNetCrossRef Naito, K., Park, J.Y.: Approximate Controllability for Trajectories of a Delay Volterra Control system. J. Optim. Theory Appl. 61(2), 271–279 (1989)MathSciNetCrossRef
9.
Zurück zum Zitat Sukavanam, N.: Approximate controllability of semilinear control systems with growing nonlinearity. In: Mathematical Theory of Control Proceedings of International Conference, pp. 353–357. Marcel Dekker, New York (1993) Sukavanam, N.: Approximate controllability of semilinear control systems with growing nonlinearity. In: Mathematical Theory of Control Proceedings of International Conference, pp. 353–357. Marcel Dekker, New York (1993)
10.
Zurück zum Zitat Sukavanam, N., Tafesse, S.: Approximate controllability of a delayed semilinear control system with growing nonlinear term. Nonlinear Anal. 74(18), 6868–6875 (2011). (2012h:93027)MathSciNetCrossRef Sukavanam, N., Tafesse, S.: Approximate controllability of a delayed semilinear control system with growing nonlinear term. Nonlinear Anal. 74(18), 6868–6875 (2011). (2012h:93027)MathSciNetCrossRef
11.
Zurück zum Zitat Xu, K., Chen, L., Wang, M., Lopes, A.M., Tenreiro-Machado, J.A., Zhai, H.: Improved decentralized fractional PD control of structure vibrations. Mathematics 2020(8), 326 (2020)CrossRef Xu, K., Chen, L., Wang, M., Lopes, A.M., Tenreiro-Machado, J.A., Zhai, H.: Improved decentralized fractional PD control of structure vibrations. Mathematics 2020(8), 326 (2020)CrossRef
12.
Zurück zum Zitat Chen, L., et al.: Robust stability and stabilization of fractional-order linear systems with polytopic uncertainties. Appl. Math. Comput. 257, 274–284 (2015)MathSciNetMATH Chen, L., et al.: Robust stability and stabilization of fractional-order linear systems with polytopic uncertainties. Appl. Math. Comput. 257, 274–284 (2015)MathSciNetMATH
13.
Zurück zum Zitat Chen, L., et al.: Delay-dependent criterion for asymptotic stability of a class of fractional-order memristive neural networks with time-varying delays. Neural Netw. 118, 289–299 (2019)CrossRef Chen, L., et al.: Delay-dependent criterion for asymptotic stability of a class of fractional-order memristive neural networks with time-varying delays. Neural Netw. 118, 289–299 (2019)CrossRef
14.
Zurück zum Zitat Chen, L., et al.: Chaos in fractional-order discrete neural networks with application to image encryption. Neural Netw. 125, 174–184 (2020)CrossRef Chen, L., et al.: Chaos in fractional-order discrete neural networks with application to image encryption. Neural Netw. 125, 174–184 (2020)CrossRef
15.
Zurück zum Zitat Travis, C.C., Webb, G.F.: Cosine families and abstract nonlinear second order differential equations. Acta Math. Acad. Sci. Hung. 32(1–2), 75–96 (1978). (58 #17404)MathSciNetCrossRef Travis, C.C., Webb, G.F.: Cosine families and abstract nonlinear second order differential equations. Acta Math. Acad. Sci. Hung. 32(1–2), 75–96 (1978). (58 #17404)MathSciNetCrossRef
16.
Zurück zum Zitat Balachandran, K., Anthoni, S.M.: Controllability of second-order semilinear neutral functional differential systems in Banach spaces. Comput. Math. Appl. 41(10–11), 1223–1235 (2001). (2002b:93012)MathSciNetCrossRef Balachandran, K., Anthoni, S.M.: Controllability of second-order semilinear neutral functional differential systems in Banach spaces. Comput. Math. Appl. 41(10–11), 1223–1235 (2001). (2002b:93012)MathSciNetCrossRef
17.
Zurück zum Zitat Henríquez, H.R., Hernández, E.: Approximate controllability of second-order distributed implicit functional systems. Nonlinear Anal. 70(2), 1023–1039 (2009). (2010b:93014)MathSciNetCrossRef Henríquez, H.R., Hernández, E.: Approximate controllability of second-order distributed implicit functional systems. Nonlinear Anal. 70(2), 1023–1039 (2009). (2010b:93014)MathSciNetCrossRef
18.
Zurück zum Zitat Park, J.Y., Han, H.K.: Controllability for some second order differential equations. Bull. Korean Math. Soc. 34(3), 411–419 (1997). (99d:93006)MathSciNetMATH Park, J.Y., Han, H.K.: Controllability for some second order differential equations. Bull. Korean Math. Soc. 34(3), 411–419 (1997). (99d:93006)MathSciNetMATH
19.
Zurück zum Zitat Balachandran, K., Park, J.Y., Anthoni, S.Marshal: Controllability of second order semilinear Volterra integrodifferential systems in Banach spaces. Bull. Korean Math. Soc. 36(1), 1–13 (1999). (99m:93004)MathSciNetMATH Balachandran, K., Park, J.Y., Anthoni, S.Marshal: Controllability of second order semilinear Volterra integrodifferential systems in Banach spaces. Bull. Korean Math. Soc. 36(1), 1–13 (1999). (99m:93004)MathSciNetMATH
20.
Zurück zum Zitat Kumar, S., Sukavanam, N.: Controllability of second-order systems with nonlocal conditions in Banach spaces. Numer. Funct. Anal. Optim. 35(4), 423–431 (2014)MathSciNetCrossRef Kumar, S., Sukavanam, N.: Controllability of second-order systems with nonlocal conditions in Banach spaces. Numer. Funct. Anal. Optim. 35(4), 423–431 (2014)MathSciNetCrossRef
22.
Zurück zum Zitat Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59(3), 1063–1077 (2010). (2011b:34239)MathSciNetCrossRef Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59(3), 1063–1077 (2010). (2011b:34239)MathSciNetCrossRef
23.
Zurück zum Zitat Sakthivel, R., Ren, Y., Mahmudov, N.I.: On the approximate controllability of semilinear fractional differential systems. Comput. Math. Appl. 62(3), 1451–1459 (2011). (2012d:93029)MathSciNetCrossRef Sakthivel, R., Ren, Y., Mahmudov, N.I.: On the approximate controllability of semilinear fractional differential systems. Comput. Math. Appl. 62(3), 1451–1459 (2011). (2012d:93029)MathSciNetCrossRef
24.
Zurück zum Zitat Sakthivel, R., Mahmudov, N.I., Nieto, Juan J.: Controllability for a class of fractional-order neutral evolution control systems. Appl. Math. Comput 218(20), 10334–10340 (2012)MathSciNetMATH Sakthivel, R., Mahmudov, N.I., Nieto, Juan J.: Controllability for a class of fractional-order neutral evolution control systems. Appl. Math. Comput 218(20), 10334–10340 (2012)MathSciNetMATH
25.
Zurück zum Zitat Kumar, S., Sukavanam, N.: Approximate controllability of fractional order semilinear systems with bounded delay. J. Differ. Equ. 252(11), 6163–6174 (2012)MathSciNetCrossRef Kumar, S., Sukavanam, N.: Approximate controllability of fractional order semilinear systems with bounded delay. J. Differ. Equ. 252(11), 6163–6174 (2012)MathSciNetCrossRef
26.
Zurück zum Zitat Kumar, S., Sukavanam, N.: On the approximate controllability of fractional order control systems with delay. Nonlinear Dyn. Syst. Theory 13(1), 69–78 (2013)MathSciNetMATH Kumar, S., Sukavanam, N.: On the approximate controllability of fractional order control systems with delay. Nonlinear Dyn. Syst. Theory 13(1), 69–78 (2013)MathSciNetMATH
28.
Zurück zum Zitat Ding, Y., Li, Y.: Finite-approximate controllability of fractional stochastic evolution equations with nonlocal conditions. J. Inequal. Appl. 2020, 95 (2020)MathSciNetCrossRef Ding, Y., Li, Y.: Finite-approximate controllability of fractional stochastic evolution equations with nonlocal conditions. J. Inequal. Appl. 2020, 95 (2020)MathSciNetCrossRef
29.
Zurück zum Zitat You, Z., Fečkan, M., Wang, J.: Relative controllability of fractional delay differential equations via delayed perturbation of Mittag–Leffler functions. J. Comput. Appl. Math. 378, 112939 (2020)MathSciNetCrossRef You, Z., Fečkan, M., Wang, J.: Relative controllability of fractional delay differential equations via delayed perturbation of Mittag–Leffler functions. J. Comput. Appl. Math. 378, 112939 (2020)MathSciNetCrossRef
30.
Zurück zum Zitat Shukla, Anurag, Sukavanam, N., Pandey, D.N.: Approximate controllability of semilinear fractional control systems of order \(\alpha \in (1,2]\) with infinite delay. Mediterr. J. Math. 13(5), 2539–2550 (2016)MathSciNetCrossRef Shukla, Anurag, Sukavanam, N., Pandey, D.N.: Approximate controllability of semilinear fractional control systems of order \(\alpha \in (1,2]\) with infinite delay. Mediterr. J. Math. 13(5), 2539–2550 (2016)MathSciNetCrossRef
31.
Zurück zum Zitat Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of fractional semilinear stochastic system of order \(\alpha \in (1,2]\). J. Dyn. Control Syst. 23(4), 679–691 (2017)MathSciNetCrossRef Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of fractional semilinear stochastic system of order \(\alpha \in (1,2]\). J. Dyn. Control Syst. 23(4), 679–691 (2017)MathSciNetCrossRef
33.
Zurück zum Zitat Shu, L., Shu, X.-B., Mao, J.: Approximate controllability and existence of mild solutions for Riemann–Liouville fractional stochastic evolution equations with nonlocal conditions of order \(1<\alpha <2\). Fract. Calc. Appl. Anal. 22(4), 1086–1112 (2019)MathSciNetCrossRef Shu, L., Shu, X.-B., Mao, J.: Approximate controllability and existence of mild solutions for Riemann–Liouville fractional stochastic evolution equations with nonlocal conditions of order \(1<\alpha <2\). Fract. Calc. Appl. Anal. 22(4), 1086–1112 (2019)MathSciNetCrossRef
34.
Zurück zum Zitat Shukla, Anurag, Sukavanam, N., Pandey, D.N.: Approximate controllability of fractional semilinear control system of order \(\alpha \in (1,2]\) in Hilbert spaces. Nonlinear Stud. 22(1), 131–138 (2015)MathSciNetMATH Shukla, Anurag, Sukavanam, N., Pandey, D.N.: Approximate controllability of fractional semilinear control system of order \(\alpha \in (1,2]\) in Hilbert spaces. Nonlinear Stud. 22(1), 131–138 (2015)MathSciNetMATH
35.
Zurück zum Zitat Li, K., Peng, J., Gao, J.: Controllability of nonlocal fractional differential systems of order \(\alpha \in (1,2]\) in Banach spaces. Rep. Math. Phys. 71(1), 33–43 (2013)MathSciNetCrossRef Li, K., Peng, J., Gao, J.: Controllability of nonlocal fractional differential systems of order \(\alpha \in (1,2]\) in Banach spaces. Rep. Math. Phys. 71(1), 33–43 (2013)MathSciNetCrossRef
Metadaten
Titel
Controllability results for fractional semilinear delay control systems
verfasst von
Anurag Shukla
Rohit Patel
Publikationsdatum
04.08.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Applied Mathematics and Computing / Ausgabe 1-2/2021
Print ISSN: 1598-5865
Elektronische ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-020-01418-4

Weitere Artikel der Ausgabe 1-2/2021

Journal of Applied Mathematics and Computing 1-2/2021 Zur Ausgabe