Skip to main content
Erschienen in: Wireless Networks 7/2018

18.03.2017

Cooperative transmission in energy harvesting-based cognitive D2D networks

verfasst von: Yuanyuan Yao, Sai Huang, Changchuan Yin

Erschienen in: Wireless Networks | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A cognitive device-to-device (D2D) network with D2D transmitters (DTs) that harvest radio-frequency energy from the primary transmitters (PTs) is investigated. A novel D2D transmitter-assisted cooperative (DTAC) protocol is proposed, in which a group of DTs that have no transmission opportunity act as potential relays to improve the communications of the primary network. The outage probability of the primary networ is characterized and used to make comparisons between the direct link and the cooperative link which adopts selection combining and maximal-ratio combining (MRC) schemes at the primary receivers. The cooperative link with MRC scheme improves the outage performance of the primary network with direct link, as much as 93%. The active probability of the DTs and the outage probability are derived, and the D2D network throughput is maximized by finding an optimal transmission power for the PTs. Simulation results are provided to validate the theoretical analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bouchouicha, D., Dupont, F., Latrach, M., & Ventura, L. (2010). Ambient RF energy harvesting. In International Conference on Renewable Energies and Power Quality (ICREPQ) (pp. 1–5). Bouchouicha, D., Dupont, F., Latrach, M., & Ventura, L. (2010). Ambient RF energy harvesting. In International Conference on Renewable Energies and Power Quality (ICREPQ) (pp. 1–5).
2.
Zurück zum Zitat Zungeru, A. M., Ang, L. M., Prabaharan, S., & Seng, K. P. (2012). Radio frequency energy harvesting and management for wireless sensornetworks. In Green mobile devices and networks: Energy optimization and scavenging techniques (pp. 341–368). Zungeru, A. M., Ang, L. M., Prabaharan, S., & Seng, K. P. (2012). Radio frequency energy harvesting and management for wireless sensornetworks. In Green mobile devices and networks: Energy optimization and scavenging techniques (pp. 341–368).
3.
Zurück zum Zitat Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2014). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys and Tutorials, 17(2), 757–789.CrossRef Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2014). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys and Tutorials, 17(2), 757–789.CrossRef
4.
Zurück zum Zitat Varshney, L. R. (2008). Transporting information and energy simultaneously. In Proceedings of the IEEE ISIT (pp. 1612–1616). Varshney, L. R. (2008). Transporting information and energy simultaneously. In Proceedings of the IEEE ISIT (pp. 1612–1616).
5.
Zurück zum Zitat Zhao, N., Yu, F. R., & Leung, V. C. M. (2015). Wireless energy harvesting in interference alignment networks. IEEE Communications Magazine, 53(6), 72–78.CrossRef Zhao, N., Yu, F. R., & Leung, V. C. M. (2015). Wireless energy harvesting in interference alignment networks. IEEE Communications Magazine, 53(6), 72–78.CrossRef
6.
Zurück zum Zitat Zhao, N., Yu, F. R., & Leung, V. C. M. (2015). Opportunistic communications in interference alignment networks with wireless power transfer. IEEE Wireless Communications, 22(1), 88–95.CrossRef Zhao, N., Yu, F. R., & Leung, V. C. M. (2015). Opportunistic communications in interference alignment networks with wireless power transfer. IEEE Wireless Communications, 22(1), 88–95.CrossRef
7.
Zurück zum Zitat Liu, Y., & Wang, X. (2015). Information and energy cooperation in OFDM relaying. In Proceedings of the IEEE ICC (pp. 2506–2511). London, UK. Liu, Y., & Wang, X. (2015). Information and energy cooperation in OFDM relaying. In Proceedings of the IEEE ICC (pp. 2506–2511). London, UK.
8.
Zurück zum Zitat Nasir, A., Zhou, X., Durrani, S., & Kennedy, R. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.CrossRef Nasir, A., Zhou, X., Durrani, S., & Kennedy, R. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.CrossRef
9.
Zurück zum Zitat Lee, S., Zhang, R., & Huang, K. (2013). Opportunistic wireless energy harvesting in cognitive radio networks. IEEE Transactions on Wireless Communications, 12(9), 4788–4799.CrossRef Lee, S., Zhang, R., & Huang, K. (2013). Opportunistic wireless energy harvesting in cognitive radio networks. IEEE Transactions on Wireless Communications, 12(9), 4788–4799.CrossRef
10.
Zurück zum Zitat Stoyan, D., Kendall, W., & Mecke, J. (1996). Stochastic geometry and its applications (2nd ed.). Hoboken: Wiley.MATH Stoyan, D., Kendall, W., & Mecke, J. (1996). Stochastic geometry and its applications (2nd ed.). Hoboken: Wiley.MATH
11.
Zurück zum Zitat Baccelli, F., & Błaszczyszyn, B. (2010). Stochastic geometry and wireless networks. Foundations and Trends in Networking, 3(3–4), 249–449.MATH Baccelli, F., & Błaszczyszyn, B. (2010). Stochastic geometry and wireless networks. Foundations and Trends in Networking, 3(3–4), 249–449.MATH
12.
Zurück zum Zitat Huang, K. (2013). Spatial throughput of mobile ad hoc networks powered by energy harvesting. IEEE Transactions on Information Theory, 59(11), 7597–7612.CrossRef Huang, K. (2013). Spatial throughput of mobile ad hoc networks powered by energy harvesting. IEEE Transactions on Information Theory, 59(11), 7597–7612.CrossRef
13.
Zurück zum Zitat Huang, K., & Lau, V. K. N. (2014). Enabling wireless power transfer in cellular networks: Architecture, modeling, and deployment. IEEE Transactions on Wireless Communications, 13(2), 902–912.CrossRef Huang, K., & Lau, V. K. N. (2014). Enabling wireless power transfer in cellular networks: Architecture, modeling, and deployment. IEEE Transactions on Wireless Communications, 13(2), 902–912.CrossRef
14.
Zurück zum Zitat Zhao, N., Yu, F. R., Sun, H., & Li, M. (2016). Adaptive power allocation schemes for spectrum sharing in interference alignment (IA)-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3700–3714.CrossRef Zhao, N., Yu, F. R., Sun, H., & Li, M. (2016). Adaptive power allocation schemes for spectrum sharing in interference alignment (IA)-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3700–3714.CrossRef
15.
Zurück zum Zitat Zanella, A., Bazzi, A., & Masini, B. M. (2015). Analysis of cooperative systems with wireless power transfer and randomly located relays. In Proceedings of the IEEE ICC. London, UK. Zanella, A., Bazzi, A., & Masini, B. M. (2015). Analysis of cooperative systems with wireless power transfer and randomly located relays. In Proceedings of the IEEE ICC. London, UK.
16.
Zurück zum Zitat Krikidis, I. (2014). Simultaneous information and energy transfer in largescale networks with/without relaying. IEEE Transactions on Communications, 62(3), 900–912.CrossRef Krikidis, I. (2014). Simultaneous information and energy transfer in largescale networks with/without relaying. IEEE Transactions on Communications, 62(3), 900–912.CrossRef
17.
Zurück zum Zitat Sakr, A. H., & Hossain, E. (2015). Cognitive and energy harvesting-based D2D communication in cellular networks: Stochastic geometry modeling and analysis. IEEE Transactions on Communications, 63(5), 1867–1880.CrossRef Sakr, A. H., & Hossain, E. (2015). Cognitive and energy harvesting-based D2D communication in cellular networks: Stochastic geometry modeling and analysis. IEEE Transactions on Communications, 63(5), 1867–1880.CrossRef
18.
Zurück zum Zitat Kingman, J. F. C. (1993). Poisson processes. Oxford: Oxford University Press.MATH Kingman, J. F. C. (1993). Poisson processes. Oxford: Oxford University Press.MATH
19.
Zurück zum Zitat Wang, B., & Liu, K. J. R. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5–23.CrossRef Wang, B., & Liu, K. J. R. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5–23.CrossRef
20.
Zurück zum Zitat Song, X., Yin, C., Liu, D., & Zhang, R. (2014). Spatial throughput characterization in cognitive radio networks with threshold-based opportunistic spectrum access. IEEE Journal on Selected Areas in Communications, 32(11), 2190–2204.CrossRef Song, X., Yin, C., Liu, D., & Zhang, R. (2014). Spatial throughput characterization in cognitive radio networks with threshold-based opportunistic spectrum access. IEEE Journal on Selected Areas in Communications, 32(11), 2190–2204.CrossRef
21.
Zurück zum Zitat Haenggi, M. (2013). Stochastic geometry for wireless networks. Cambridge: Cambridge University Press.MATH Haenggi, M. (2013). Stochastic geometry for wireless networks. Cambridge: Cambridge University Press.MATH
22.
Zurück zum Zitat Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.CrossRef Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.CrossRef
23.
Zurück zum Zitat Beaulieu, N. C. (2013). A novel generalized framework for performance analysis of selection combining diversity. IEEE Transactions on Communications, 61(10), 4196–4205.CrossRef Beaulieu, N. C. (2013). A novel generalized framework for performance analysis of selection combining diversity. IEEE Transactions on Communications, 61(10), 4196–4205.CrossRef
24.
Zurück zum Zitat Haenggi, M., & Ganti, R. K. (2008). Interference in large wireless networks. Foundations and Trends in Networking, 3(2), 127–248.CrossRefMATH Haenggi, M., & Ganti, R. K. (2008). Interference in large wireless networks. Foundations and Trends in Networking, 3(2), 127–248.CrossRefMATH
Metadaten
Titel
Cooperative transmission in energy harvesting-based cognitive D2D networks
verfasst von
Yuanyuan Yao
Sai Huang
Changchuan Yin
Publikationsdatum
18.03.2017
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 7/2018
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-017-1480-7

Weitere Artikel der Ausgabe 7/2018

Wireless Networks 7/2018 Zur Ausgabe

Neuer Inhalt