Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 1/2019

13.11.2018

RETRACTED ARTICLE: Core–shell super-structures via smart deposition of naphthothiadiazole and benzodithiophene-possessing polymer backbones onto carbon nanotubes and photovoltaic applications thereof

verfasst von: Samira Agbolaghi

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Core–shell super-structures were developed via π-stacking of poly[benzodithiophene-bis(decyltetradecyl-thien) naphthothiadiazole] (PBDT-DTNT) and poly[bis(triiso-propylsilylethynyl) benzodithiophene-bis(decyltetradecyl-thien) naphthobisthiadiazole] (PBDT-TIPS-DTNT-DT) as conductive shells onto carbon nanotubes (CNTs). Structure of conjugated polymers substantially determines their deposition model onto CNTs. Regioregular poly(3-hexyl thiophene) (P3HT) chains with hexyl side chains developed delicate nanofibrils with a base attached to CNT surface. However, PBDT-DTNT and PBDT-TIPS-DTNT-DT complicated conductive polymers with fused and infused thiophenic and benzenic rings preferred to be π-stacked with a face-on manner onto CNT surface and fabricate shells. Grafting of CNT surface with a polythiophene such as poly(3-dodecyl thiophene) (PDDT) introduced some defects onto the shell structure; because PBDT-DTNT and PBDT-TIPS-DTNT-DT polymers were not able to be π-deposited onto CNT surface grafted with PDDT. The PDDT grafts were considered as hindrances against the stacking of complicated polymers. The thickness of PBDT-DTNT and PBDT-TIPS-DTNT-DT shells ranged in 10–12 and 5–8 nm, respectively. Higher hindrance of TIPS side structures in PBDT-TIPS-DTNT-DT chains reflected thinner shells. By developing core–shells based on PBDT-TIPS-DTNT-DT and PBDT-DTNT, the conductivity reached 10.11 and 12.15 S/cm, respectively. Donor–acceptor core–shell nano-hybrids were then applied in active layer of photovoltaics. Efficiencies for CNT (core)-PBDT-DTNT (shell) and CNT (core)-PBDT-TIPS-DTNT-DT (shell) were 4.07 and 2.34%, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat K. Khan, A. Kausar, A.U. Rahman, Modern drifts in conjugated polymers and nanocomposites for organic solar cells: a review. Polym. Plast. Technol. Eng. 54(2), 140–154 (2015)CrossRef K. Khan, A. Kausar, A.U. Rahman, Modern drifts in conjugated polymers and nanocomposites for organic solar cells: a review. Polym. Plast. Technol. Eng. 54(2), 140–154 (2015)CrossRef
2.
Zurück zum Zitat S. Bhadra, D. Khastgir, Degradation and stability of polyaniline on exposure to electron beam irradiation (structure–property relationship). Polym. Degrad. Stab. 92(10), 1824–1832 (2007)CrossRef S. Bhadra, D. Khastgir, Degradation and stability of polyaniline on exposure to electron beam irradiation (structure–property relationship). Polym. Degrad. Stab. 92(10), 1824–1832 (2007)CrossRef
3.
Zurück zum Zitat G. Li, R. Zhu, Y. Yang, Polymer solar cells. Nat. Photonics 6(3), 153–161 (2012)CrossRef G. Li, R. Zhu, Y. Yang, Polymer solar cells. Nat. Photonics 6(3), 153–161 (2012)CrossRef
4.
Zurück zum Zitat D. Dang, P. Zhou, L. Duan, X. Bao, R. Yang, W. Zhu, An efficient method to achieve a balanced open circuit voltage and short circuit current density in polymer solar cells. J. Mater. Chem. A 4(21), 8291–8297 (2016)CrossRef D. Dang, P. Zhou, L. Duan, X. Bao, R. Yang, W. Zhu, An efficient method to achieve a balanced open circuit voltage and short circuit current density in polymer solar cells. J. Mater. Chem. A 4(21), 8291–8297 (2016)CrossRef
5.
Zurück zum Zitat Y. Li, Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc. Chem. Res. 45(5), 723–733 (2012)CrossRef Y. Li, Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc. Chem. Res. 45(5), 723–733 (2012)CrossRef
6.
Zurück zum Zitat L. Huo, T. Liu, X. Sun, Y. Cai, A.J. Heeger, Y. Sun, Single-junction organic solar cells based on a novel wide-bandgap polymer with efficiency of 9.7%. Adv. Mater. 27(18), 2938–2944 (2015)CrossRef L. Huo, T. Liu, X. Sun, Y. Cai, A.J. Heeger, Y. Sun, Single-junction organic solar cells based on a novel wide-bandgap polymer with efficiency of 9.7%. Adv. Mater. 27(18), 2938–2944 (2015)CrossRef
7.
Zurück zum Zitat G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243), 1789–1791 (1995)CrossRef G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243), 1789–1791 (1995)CrossRef
8.
Zurück zum Zitat L. Ye, S. Zhang, W. Zhao, H. Yao, J. Hou, Highly efficient 2D-conjugated benzodithiophene-based photovoltaic polymer with linear alkylthio side chain. Chem. Mater. 26(12), 3603–3605 (2014)CrossRef L. Ye, S. Zhang, W. Zhao, H. Yao, J. Hou, Highly efficient 2D-conjugated benzodithiophene-based photovoltaic polymer with linear alkylthio side chain. Chem. Mater. 26(12), 3603–3605 (2014)CrossRef
9.
Zurück zum Zitat N. Wang, W. Chen, W. Shen, L. Duan, M. Qiu, J. Wang, C. Yang, Z. Du, R. Yang, Novel donor–acceptor polymers containing o-fluoro-p-alkoxyphenyl-substituted benzo [1, 2-b: 4, 5-b′] dithiophene units for polymer solar cells with power conversion efficiency exceeding 9%. J. Mater. Chem. A 4(26), 10212–10222 (2016)CrossRef N. Wang, W. Chen, W. Shen, L. Duan, M. Qiu, J. Wang, C. Yang, Z. Du, R. Yang, Novel donor–acceptor polymers containing o-fluoro-p-alkoxyphenyl-substituted benzo [1, 2-b: 4, 5-b′] dithiophene units for polymer solar cells with power conversion efficiency exceeding 9%. J. Mater. Chem. A 4(26), 10212–10222 (2016)CrossRef
10.
Zurück zum Zitat Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, H. Yan, Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014)CrossRef Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, H. Yan, Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014)CrossRef
11.
Zurück zum Zitat Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photon. 6(9), 591–595 (2012)CrossRef Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photon. 6(9), 591–595 (2012)CrossRef
12.
Zurück zum Zitat M. Wang, X. Hu, P. Liu, W. Li, X. Gong, F. Huang, Y. Cao, Donor–acceptor conjugated polymer based on naphtho [1, 2-c: 5, 6-c] bis [1, 2, 5] thiadiazole for high-performance polymer solar cells. J. Am. Chem. Soc. 133(25), 9638–9641 (2011)CrossRef M. Wang, X. Hu, P. Liu, W. Li, X. Gong, F. Huang, Y. Cao, Donor–acceptor conjugated polymer based on naphtho [1, 2-c: 5, 6-c] bis [1, 2, 5] thiadiazole for high-performance polymer solar cells. J. Am. Chem. Soc. 133(25), 9638–9641 (2011)CrossRef
13.
Zurück zum Zitat I. Osaka, T. Abe, M. Shimawaki, T. Koganezawa, K. Takimiya, Naphthodithiophene-based donor–acceptor polymers: versatile semiconductors for OFETs and OPVs. ACS Macro Lett. 1(4), 437–440 (2012)CrossRef I. Osaka, T. Abe, M. Shimawaki, T. Koganezawa, K. Takimiya, Naphthodithiophene-based donor–acceptor polymers: versatile semiconductors for OFETs and OPVs. ACS Macro Lett. 1(4), 437–440 (2012)CrossRef
14.
Zurück zum Zitat I. Osaka, M. Shimawaki, H. Mori, I. Doi, E. Miyazaki, T. Koganezawa, K. Takimiya, Synthesis, characterization, and transistor and solar cell applications of a naphthobisthiadiazole-based semiconducting polymer. J. Am. Chem. Soc. 134(7), 3498–3507 (2012)CrossRef I. Osaka, M. Shimawaki, H. Mori, I. Doi, E. Miyazaki, T. Koganezawa, K. Takimiya, Synthesis, characterization, and transistor and solar cell applications of a naphthobisthiadiazole-based semiconducting polymer. J. Am. Chem. Soc. 134(7), 3498–3507 (2012)CrossRef
15.
Zurück zum Zitat P. Guo, Y. Xia, F. Huang, G. Luo, J. Li, P. Zhang, Y. Zhu, C. Yang, H. Wu, Y. Cao, An alkylthieno-2-yl flanked dithieno [2, 3-d: 2′, 3′-d′] benzo [1, 2-b: 4, 5-b′] dithiophene-based low band gap conjugated polymer for high performance photovoltaic solar cells. RSC Adv. 5(17), 12879–12885 (2015)CrossRef P. Guo, Y. Xia, F. Huang, G. Luo, J. Li, P. Zhang, Y. Zhu, C. Yang, H. Wu, Y. Cao, An alkylthieno-2-yl flanked dithieno [2, 3-d: 2′, 3′-d′] benzo [1, 2-b: 4, 5-b′] dithiophene-based low band gap conjugated polymer for high performance photovoltaic solar cells. RSC Adv. 5(17), 12879–12885 (2015)CrossRef
16.
Zurück zum Zitat E. Bundgaard, F.C. Krebs, Low-band-gap conjugated polymers based on thiophene, benzothiadiazole, and benzobis (thiadiazole). Macromolecules 39(8), 2823–2831 (2006)CrossRef E. Bundgaard, F.C. Krebs, Low-band-gap conjugated polymers based on thiophene, benzothiadiazole, and benzobis (thiadiazole). Macromolecules 39(8), 2823–2831 (2006)CrossRef
17.
Zurück zum Zitat T.T. Steckler, X. Zhang, J. Hwang, R. Honeyager, S. Ohira, X.H. Zhang, A. Grant, S. Ellinger, S.A. Odom, D. Sweat, D.B. Tanner, A spray-processable, low bandgap, and ambipolar donor–acceptor conjugated polymer. J. Am. Chem. Soc. 131(8), 2824–2826 (2009)CrossRef T.T. Steckler, X. Zhang, J. Hwang, R. Honeyager, S. Ohira, X.H. Zhang, A. Grant, S. Ellinger, S.A. Odom, D. Sweat, D.B. Tanner, A spray-processable, low bandgap, and ambipolar donor–acceptor conjugated polymer. J. Am. Chem. Soc. 131(8), 2824–2826 (2009)CrossRef
18.
Zurück zum Zitat J. Tong, L. An, J. Li, P. Zhang, P. Guo, C. Yang, Q. Su, X. Wang, Y. Xia, Large branched alkylthienyl bridged naphtho [1,2-c:5,6-c′] bis [1,2,5] thiadiazole-containing low bandgap copolymers: Synthesis and photovoltaic application. J. Macromol. Sci. Part A 54(3), 176–185 (2017)CrossRef J. Tong, L. An, J. Li, P. Zhang, P. Guo, C. Yang, Q. Su, X. Wang, Y. Xia, Large branched alkylthienyl bridged naphtho [1,2-c:5,6-c′] bis [1,2,5] thiadiazole-containing low bandgap copolymers: Synthesis and photovoltaic application. J. Macromol. Sci. Part A 54(3), 176–185 (2017)CrossRef
19.
Zurück zum Zitat I. Osaka, T. Kakara, N. Takemura, T. Koganezawa, K. Takimiya, Naphthodithiophene–naphthobisthiadiazole copolymers for solar cells: alkylation drives the polymer backbone flat and promotes efficiency. J. Am. Chem. Soc. 135(24), 8834–8837 (2013)CrossRef I. Osaka, T. Kakara, N. Takemura, T. Koganezawa, K. Takimiya, Naphthodithiophene–naphthobisthiadiazole copolymers for solar cells: alkylation drives the polymer backbone flat and promotes efficiency. J. Am. Chem. Soc. 135(24), 8834–8837 (2013)CrossRef
20.
Zurück zum Zitat X. Hu, M. Wang, F. Huang, X. Gong, Y. Cao, 23% Enhanced efficiency of polymer solar cells processed with 1-chloronaphthalene as the solvent additive. Synth. Met. 164, 1–5 (2013)CrossRef X. Hu, M. Wang, F. Huang, X. Gong, Y. Cao, 23% Enhanced efficiency of polymer solar cells processed with 1-chloronaphthalene as the solvent additive. Synth. Met. 164, 1–5 (2013)CrossRef
21.
Zurück zum Zitat Y. Sun, J. Seifter, M. Wang, L.A. Perez, C. Luo, G.C. Bazan, F. Huang, Y. Cao, A.J. Heeger, Effect of molecular order on the performance of naphthobisthiadiazole-based polymer solar cells. Adv. Energy Mater. 4(6), 1–5 (2014)CrossRef Y. Sun, J. Seifter, M. Wang, L.A. Perez, C. Luo, G.C. Bazan, F. Huang, Y. Cao, A.J. Heeger, Effect of molecular order on the performance of naphthobisthiadiazole-based polymer solar cells. Adv. Energy Mater. 4(6), 1–5 (2014)CrossRef
22.
Zurück zum Zitat C. Mu, P. Liu, W. Ma, K. Jiang, J. Zhao, K. Zhang, Z. Chen, Z. Wei, Y. Yi, J. Wang, S. Yang, High-efficiency all-polymer solar cells based on a pair of crystalline low-bandgap polymers. Adv. Mater. 26(42), 7224–7230 (2014)CrossRef C. Mu, P. Liu, W. Ma, K. Jiang, J. Zhao, K. Zhang, Z. Chen, Z. Wei, Y. Yi, J. Wang, S. Yang, High-efficiency all-polymer solar cells based on a pair of crystalline low-bandgap polymers. Adv. Mater. 26(42), 7224–7230 (2014)CrossRef
23.
Zurück zum Zitat V. Vohra, K. Kawashima, T. Kakara, T. Koganezawa, I. Osaka, K. Takimiya, H. Murata, Nat. Photon. 9, 403–409 (2015)CrossRef V. Vohra, K. Kawashima, T. Kakara, T. Koganezawa, I. Osaka, K. Takimiya, H. Murata, Nat. Photon. 9, 403–409 (2015)CrossRef
24.
Zurück zum Zitat L. Huo, Y. Zhou, Y. Li, Alkylthio-substituted polythiophene: absorption and photovoltaic properties. Macromol. Rapid Commun. 30(11), 925–931 (2009)CrossRef L. Huo, Y. Zhou, Y. Li, Alkylthio-substituted polythiophene: absorption and photovoltaic properties. Macromol. Rapid Commun. 30(11), 925–931 (2009)CrossRef
25.
Zurück zum Zitat C. Cui, W.Y. Wong, Y. Li, Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution. Energy Environ. Sci. 7(7), 2276–2284 (2014)CrossRef C. Cui, W.Y. Wong, Y. Li, Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution. Energy Environ. Sci. 7(7), 2276–2284 (2014)CrossRef
26.
Zurück zum Zitat J.H. Kim, M. Lee, H. Yang, D.H. Hwang, A high molecular weight triisopropylsilylethynyl (TIPS)-benzodithiophene and diketopyrrolopyrrole-based copolymer for high performance organic photovoltaic cells. J. Mater. Chem. A 2(18), 6348–6352 (2014)CrossRef J.H. Kim, M. Lee, H. Yang, D.H. Hwang, A high molecular weight triisopropylsilylethynyl (TIPS)-benzodithiophene and diketopyrrolopyrrole-based copolymer for high performance organic photovoltaic cells. J. Mater. Chem. A 2(18), 6348–6352 (2014)CrossRef
27.
Zurück zum Zitat S. Wood, J.H. Kim, D.H. Hwang, J.S. Kim, Effects of fluorination and side chain branching on molecular conformation and photovoltaic performance of donor–acceptor copolymers. Chem. Mater. 27(12), 4196–4204 (2015)CrossRef S. Wood, J.H. Kim, D.H. Hwang, J.S. Kim, Effects of fluorination and side chain branching on molecular conformation and photovoltaic performance of donor–acceptor copolymers. Chem. Mater. 27(12), 4196–4204 (2015)CrossRef
28.
Zurück zum Zitat H. Gu, T.M. Swager, Fabrication of free-standing, conductive, and transparent carbon nanotube films. Adv. Mater. 20(23), 4433–4437 (2008)CrossRef H. Gu, T.M. Swager, Fabrication of free-standing, conductive, and transparent carbon nanotube films. Adv. Mater. 20(23), 4433–4437 (2008)CrossRef
29.
Zurück zum Zitat R. Allen, L. Pan, G.G. Fuller, Z. Bao, Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers. ACS Appl. Mater. Interfaces 6(13), 9966–9974 (2014)CrossRef R. Allen, L. Pan, G.G. Fuller, Z. Bao, Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers. ACS Appl. Mater. Interfaces 6(13), 9966–9974 (2014)CrossRef
30.
Zurück zum Zitat X.I.A.O.L.E.I. Liu, J. Ly, S.O.N.G. Han, D.A.I.H.U.A. Zhang, A. Requicha, M.E. Thompson, C.H.O.N.G.W.U. Zhou, Synthesis and electronic properties of individual single-walled carbon nanotube/polypyrrole composite nanocables. Adv. Mater. 17(22), 2727–2732 (2005)CrossRef X.I.A.O.L.E.I. Liu, J. Ly, S.O.N.G. Han, D.A.I.H.U.A. Zhang, A. Requicha, M.E. Thompson, C.H.O.N.G.W.U. Zhou, Synthesis and electronic properties of individual single-walled carbon nanotube/polypyrrole composite nanocables. Adv. Mater. 17(22), 2727–2732 (2005)CrossRef
31.
Zurück zum Zitat I.A. Tchmutin, A.T. Ponomarenko, E.P. Krinichnaya, G.I. Kozub, O.N. Efimov, Electrical properties of composites based on conjugated polymers and conductive fillers. Carbon 41(7), 1391–1395 (2003)CrossRef I.A. Tchmutin, A.T. Ponomarenko, E.P. Krinichnaya, G.I. Kozub, O.N. Efimov, Electrical properties of composites based on conjugated polymers and conductive fillers. Carbon 41(7), 1391–1395 (2003)CrossRef
32.
Zurück zum Zitat R.G. Goh, N. Motta, J.M. Bell, E.R. Waclawik, Effects of substrate curvature on the adsorption of poly (3-hexylthiophene) on single-walled carbon nanotubes. Appl. Phys. Lett. 88(5), 053101 (2006)CrossRef R.G. Goh, N. Motta, J.M. Bell, E.R. Waclawik, Effects of substrate curvature on the adsorption of poly (3-hexylthiophene) on single-walled carbon nanotubes. Appl. Phys. Lett. 88(5), 053101 (2006)CrossRef
33.
Zurück zum Zitat A. Star, J.F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E.W. Wong, X. Yang, S.W. Chung, H. Choi, J.R. Heath, Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew. Chem. Int. Ed. 40(9), 1721–1725 (2001)CrossRef A. Star, J.F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E.W. Wong, X. Yang, S.W. Chung, H. Choi, J.R. Heath, Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew. Chem. Int. Ed. 40(9), 1721–1725 (2001)CrossRef
34.
Zurück zum Zitat J. Chen, H. Liu, W.A. Weimer, M.D. Halls, D.H. Waldeck, G.C. Walker, Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J. Am. Chem. Soc. 124(31), 9034–9035 (2002)CrossRef J. Chen, H. Liu, W.A. Weimer, M.D. Halls, D.H. Waldeck, G.C. Walker, Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J. Am. Chem. Soc. 124(31), 9034–9035 (2002)CrossRef
Metadaten
Titel
RETRACTED ARTICLE: Core–shell super-structures via smart deposition of naphthothiadiazole and benzodithiophene-possessing polymer backbones onto carbon nanotubes and photovoltaic applications thereof
verfasst von
Samira Agbolaghi
Publikationsdatum
13.11.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 1/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-0353-x

Weitere Artikel der Ausgabe 1/2019

Journal of Materials Science: Materials in Electronics 1/2019 Zur Ausgabe

Neuer Inhalt