Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2016

11.10.2016

Corrosive Metabolic Activity of Desulfovibrio sp. on 316L Stainless Steel

verfasst von: Simge Arkan, Esra Ilhan-Sungur, Nurhan Cansever

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present study investigated the effects of chemical parameters (SO4 2−, PO4 3−, Cl, pH) and the contents of extracellular polymeric substances (EPS) regarding the growth of Desulfovibrio sp. on the microbiologically induced corrosion of 316L stainless steel (SS). The experiments were carried out in laboratory-scaled test and control systems. 316L SS coupons were exposed to Desulfovibrio sp. culture over 720 h. The test coupons were removed at specific sampling times for enumeration of Desulfovibrio sp., determination of the corrosion rate by the weight loss measurement method and also for analysis of carbohydrate and protein in the EPS. The chemical parameters of the culture were also established. Biofilm/film formation and corrosion products on the 316L SS surfaces were investigated by scanning electron microscopy and energy-dispersive x-ray spectrometry analyses in the laboratory-scaled systems. It was found that Desulfovibrio sp. led to the corrosion of 316L SS. Both the amount of extracellular protein and chemical parameters (SO4 2− and PO4 3−) of the culture caused an increase in the corrosion of metal. There was a significantly positive relationship between the sessile and planktonic Desulfovibrio sp. counts (p < 0.01). It was detected that the growth phases of the sessile and planktonic Desulfovibrio sp. were different from each other and the growth phases of the sessile Desulfovibrio sp. vary depending on the subspecies of Desulfovibrio sp. and the type of metal when compared with the other published studies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W.A. Hamilton, Sulphate Reducing Bacteria and Anaerobic Corrosion, Annu. Rev. Microbiol., 1985, 39, p 195–217CrossRef W.A. Hamilton, Sulphate Reducing Bacteria and Anaerobic Corrosion, Annu. Rev. Microbiol., 1985, 39, p 195–217CrossRef
2.
Zurück zum Zitat B.J. Little and J.S. Lee, Microbiologically Influenced Corrosion: an Update, Int. Mater. Rev., 2014, 59(7), p 384–393CrossRef B.J. Little and J.S. Lee, Microbiologically Influenced Corrosion: an Update, Int. Mater. Rev., 2014, 59(7), p 384–393CrossRef
3.
Zurück zum Zitat G. Muyzer and A.J.M. Stams, The Ecology and Biotechnology of Sulphate Reducing Bacteria, Nat. Rev. Microbiol., 2008, 6, p 441–454 G. Muyzer and A.J.M. Stams, The Ecology and Biotechnology of Sulphate Reducing Bacteria, Nat. Rev. Microbiol., 2008, 6, p 441–454
4.
Zurück zum Zitat K. Ravenschlag, K. Sahm, C. Knoblauch, B.B. Jørgensen, and R. Amann, Community Structure, Cellular rRNA Content, and Activity of Sulfate-reducing Bacteria in Marine Arctic Sediments, Appl. Environ. Microbiol., 2000, 66, p 3592–3602CrossRef K. Ravenschlag, K. Sahm, C. Knoblauch, B.B. Jørgensen, and R. Amann, Community Structure, Cellular rRNA Content, and Activity of Sulfate-reducing Bacteria in Marine Arctic Sediments, Appl. Environ. Microbiol., 2000, 66, p 3592–3602CrossRef
5.
Zurück zum Zitat C. Jeanthon, S. L’Haridon, V. Cueff, A. Banta, A.L. Reysenbach, and D. Prieur, Thermodesulfobacterium hydrogeniphilum sp. nov., a Thermophilic, Chemolithoautotrophic, Sulfate-reducing Bacterium Isolated from a Deep-sea Hydrothermal Vent at Guaymas Basin, and Emendation of the Genus Thermodesulfobacterium, Int. J. Syst. Evol. Microbiol., 2002, 52, p 765–772 C. Jeanthon, S. L’Haridon, V. Cueff, A. Banta, A.L. Reysenbach, and D. Prieur, Thermodesulfobacterium hydrogeniphilum sp. nov., a Thermophilic, Chemolithoautotrophic, Sulfate-reducing Bacterium Isolated from a Deep-sea Hydrothermal Vent at Guaymas Basin, and Emendation of the Genus Thermodesulfobacterium, Int. J. Syst. Evol. Microbiol., 2002, 52, p 765–772
6.
Zurück zum Zitat K. Knittel, A. Boetius, A. Lemke, H. Eilers, K. Lochte, O. Pfannkuche, P. Linke, and R. Amann, Activity, Distribution, and Diversity of Sulfate Reducers and Other Bacteria in Sediments above Gas Hydrate (Cascadia Margin, Oregon), Geomicrobiol J., 2003, 20, p 269–294CrossRef K. Knittel, A. Boetius, A. Lemke, H. Eilers, K. Lochte, O. Pfannkuche, P. Linke, and R. Amann, Activity, Distribution, and Diversity of Sulfate Reducers and Other Bacteria in Sediments above Gas Hydrate (Cascadia Margin, Oregon), Geomicrobiol J., 2003, 20, p 269–294CrossRef
7.
Zurück zum Zitat A.M. Sen, Acidophilic Sulphate Reducing Bacteria: Candidates for Bioremediation of Acid Mine Drainage Pollution, University of Wales, Thesis, 2001 A.M. Sen, Acidophilic Sulphate Reducing Bacteria: Candidates for Bioremediation of Acid Mine Drainage Pollution, University of Wales, Thesis, 2001
8.
Zurück zum Zitat E. Ilhan-Sungur and A. Cotuk, Characterization of Sulfate Reducing Bacteria Isolated from Cooling Towers, Environ. Monit. Assess., 2005, 104(1–3), p 211–219CrossRef E. Ilhan-Sungur and A. Cotuk, Characterization of Sulfate Reducing Bacteria Isolated from Cooling Towers, Environ. Monit. Assess., 2005, 104(1–3), p 211–219CrossRef
9.
Zurück zum Zitat C. Xu, Y. Zhang, G. Cheng, and W. Zhu, Corrosion and Electrochemical Behavior of 316L Stainless Steel in Sulfate-reducing and Iron-oxidizing Bacteria Solutions, Chin. J. Chem. Eng., 2006, 14(6), p 829–834CrossRef C. Xu, Y. Zhang, G. Cheng, and W. Zhu, Corrosion and Electrochemical Behavior of 316L Stainless Steel in Sulfate-reducing and Iron-oxidizing Bacteria Solutions, Chin. J. Chem. Eng., 2006, 14(6), p 829–834CrossRef
10.
Zurück zum Zitat S.G. Choudhary, Emerging Microbial Control Issues in Cooling Water Systems, Hydrocarb. Process, 1998, 77, p 91–102 S.G. Choudhary, Emerging Microbial Control Issues in Cooling Water Systems, Hydrocarb. Process, 1998, 77, p 91–102
11.
Zurück zum Zitat J.W. Costerton, Z. Lewandowski, D.E. Caldwell, D.R. Korber, and H.M. Lappin-Scott, Microbial Biofilms, Annu. Rev. Microbiol., 1995, 49, p 711–745CrossRef J.W. Costerton, Z. Lewandowski, D.E. Caldwell, D.R. Korber, and H.M. Lappin-Scott, Microbial Biofilms, Annu. Rev. Microbiol., 1995, 49, p 711–745CrossRef
12.
Zurück zum Zitat M.E. Davey and G.A. O’Toole, Microbial Biofilms: from Ecology to Molecular Genetics, Microbiol. Mol. Biol. Rev., 2000, 64, p 847–867CrossRef M.E. Davey and G.A. O’Toole, Microbial Biofilms: from Ecology to Molecular Genetics, Microbiol. Mol. Biol. Rev., 2000, 64, p 847–867CrossRef
13.
Zurück zum Zitat I. Beech, V. Zinkevich, R. Tapper, and R. Gubner, Direct Involvement of an Extracellular Complex Product by a Marine Sulfate-reducing Bacterium in Deterioration of Steel, Geomicrobiol J., 1997, 15, p 121–134CrossRef I. Beech, V. Zinkevich, R. Tapper, and R. Gubner, Direct Involvement of an Extracellular Complex Product by a Marine Sulfate-reducing Bacterium in Deterioration of Steel, Geomicrobiol J., 1997, 15, p 121–134CrossRef
14.
Zurück zum Zitat T.S. Rao, T.N. Sairam, B. Viswanathan, and K.V.K. Nair, Carbon Steel Corrosion by Iron Oxidising and Sulphate Reducing Bacteria in a Freshwater Cooling System, Corros. Sci., 2000, 42, p 1417–1431CrossRef T.S. Rao, T.N. Sairam, B. Viswanathan, and K.V.K. Nair, Carbon Steel Corrosion by Iron Oxidising and Sulphate Reducing Bacteria in a Freshwater Cooling System, Corros. Sci., 2000, 42, p 1417–1431CrossRef
15.
Zurück zum Zitat E. Miranda, M. Bethencourt, F.J. Botana, M.J. Cano, J.M. Sanchez-Amaya, A. Corzo, J. Garcia de Lomas, M.L. Fardeau, and B. Ollivier, Biocorrosion of Carbon Steel Alloys by a Hydrogenotrophic Sulfate-reducing Bacterium Desulfovibrio capillatus Isolated from a Mexican Oil Field Separator, Corros. Sci., 2006, 48, p 2417–2431CrossRef E. Miranda, M. Bethencourt, F.J. Botana, M.J. Cano, J.M. Sanchez-Amaya, A. Corzo, J. Garcia de Lomas, M.L. Fardeau, and B. Ollivier, Biocorrosion of Carbon Steel Alloys by a Hydrogenotrophic Sulfate-reducing Bacterium Desulfovibrio capillatus Isolated from a Mexican Oil Field Separator, Corros. Sci., 2006, 48, p 2417–2431CrossRef
16.
Zurück zum Zitat E. Ilhan-Sungur, D. Öztürk, B. Abbas, and G. Muyzer, Diversity of Microbial Communities in Cooling Tower Water, 4th Congress of European Microbiologists, FEMS 2011, Switzerland, Geneva, 2011 E. Ilhan-Sungur, D. Öztürk, B. Abbas, and G. Muyzer, Diversity of Microbial Communities in Cooling Tower Water, 4th Congress of European Microbiologists, FEMS 2011, Switzerland, Geneva, 2011
17.
Zurück zum Zitat P.R. Puckorius, Water Corrosion Mechanism, ASHRAE J., 1999, 41, p 57–61 P.R. Puckorius, Water Corrosion Mechanism, ASHRAE J., 1999, 41, p 57–61
18.
Zurück zum Zitat T.S. Rao, J.K. Aruna, B. Anupkumar, S.V. Narasimhan, and R. Feser, Pitting Corrosion of Titanium by a Freshwater Strain of Sulfate Reducing Bacteria (Desulfovibrio vulgaris), Corros. Sci., 2005, 47, p 1071–1084CrossRef T.S. Rao, J.K. Aruna, B. Anupkumar, S.V. Narasimhan, and R. Feser, Pitting Corrosion of Titanium by a Freshwater Strain of Sulfate Reducing Bacteria (Desulfovibrio vulgaris), Corros. Sci., 2005, 47, p 1071–1084CrossRef
19.
Zurück zum Zitat A.D. Seth and R.G.J. Edyvean, The Function of Sulfate Reducing Bacteria in Corrosion of Potable Water Mains, Int. Biodeter. Biodegr., 2006, 58, p 108–111CrossRef A.D. Seth and R.G.J. Edyvean, The Function of Sulfate Reducing Bacteria in Corrosion of Potable Water Mains, Int. Biodeter. Biodegr., 2006, 58, p 108–111CrossRef
20.
Zurück zum Zitat F.K. Adeeba, A.P. Patil, and T.S. Rao, Effect of Zinc Addition to Copper in Improving its Corrosion Resistance in Sulfide Polluted Synthetic Seawater, T. Indian I. Metals, 2011, 64, p 99–103CrossRef F.K. Adeeba, A.P. Patil, and T.S. Rao, Effect of Zinc Addition to Copper in Improving its Corrosion Resistance in Sulfide Polluted Synthetic Seawater, T. Indian I. Metals, 2011, 64, p 99–103CrossRef
21.
Zurück zum Zitat W.A. Hamilton, Microbially Influenced Corrosion as a Model System for the Study of Metal Microbe Interactions: A Unifying Electron Transfer Hypothesis, Biofouling, 2003, 19(1), p 65–76CrossRef W.A. Hamilton, Microbially Influenced Corrosion as a Model System for the Study of Metal Microbe Interactions: A Unifying Electron Transfer Hypothesis, Biofouling, 2003, 19(1), p 65–76CrossRef
22.
Zurück zum Zitat R. Javaherdashti, Microbiologically Influenced Corrosion: An Engineering Insight, Springer, London, 2008 R. Javaherdashti, Microbiologically Influenced Corrosion: An Engineering Insight, Springer, London, 2008
23.
Zurück zum Zitat C.A.H. Von Wolzogen Kühr and L.S. Van Der Vlugt, The Graphitization of Cast Iron as an Electrochemical Process in Anaerobic Soils, Water, 1934, 18, p 147–165 C.A.H. Von Wolzogen Kühr and L.S. Van Der Vlugt, The Graphitization of Cast Iron as an Electrochemical Process in Anaerobic Soils, Water, 1934, 18, p 147–165
24.
Zurück zum Zitat R.A. King and J.D.A. Miller, Corrosion by the Sulphate-Reducing Bacteria, Nature, 1971, 233, p 491–492CrossRef R.A. King and J.D.A. Miller, Corrosion by the Sulphate-Reducing Bacteria, Nature, 1971, 233, p 491–492CrossRef
25.
Zurück zum Zitat B.S. Rajagopal and J. Le Gall, Utilization of Cathodic Hydrogen by Hydrogen-oxidizing Bacteria, Appl. Microbiol. Biotechnol., 1989, 31(4), p 406–412CrossRef B.S. Rajagopal and J. Le Gall, Utilization of Cathodic Hydrogen by Hydrogen-oxidizing Bacteria, Appl. Microbiol. Biotechnol., 1989, 31(4), p 406–412CrossRef
26.
Zurück zum Zitat P.J. Antony, S. Chongdar, P. Kumar, and R. Raman, Corrosion of 2205 Duplex Stainless Steel in Chloride Medium Containing Sulfate-reducing Bacteria, Electrochim. Acta, 2007, 52(12), p 3985–3994CrossRef P.J. Antony, S. Chongdar, P. Kumar, and R. Raman, Corrosion of 2205 Duplex Stainless Steel in Chloride Medium Containing Sulfate-reducing Bacteria, Electrochim. Acta, 2007, 52(12), p 3985–3994CrossRef
27.
Zurück zum Zitat W.A. Hamilton and W. Lee, Biocorrosion, Sulfate Reducing Bacteria, L.L. Barton, Ed., Plenum Press, New York, 1995, p 243–264CrossRef W.A. Hamilton and W. Lee, Biocorrosion, Sulfate Reducing Bacteria, L.L. Barton, Ed., Plenum Press, New York, 1995, p 243–264CrossRef
28.
Zurück zum Zitat I.B. Beech and C.W.S. Cheung, Interactions of Exopolymers Produced by Sulphate- reducing Bacteria with Metal Ions, Int. Biodeter. Biodegrad., 1995, 35, p 59–72CrossRef I.B. Beech and C.W.S. Cheung, Interactions of Exopolymers Produced by Sulphate- reducing Bacteria with Metal Ions, Int. Biodeter. Biodegrad., 1995, 35, p 59–72CrossRef
29.
Zurück zum Zitat K.Y. Chan, L.C. Xu, and H.H.P. Fang, Anaerobic Electrochemical Corrosion of Mild Steel in the Presence of Extracellular Polymeric Substances Produced by a Culture Enriched in Sulfate-reducing Bacteria, Environ. Sci. Technol., 2002, 36, p 1720–1727CrossRef K.Y. Chan, L.C. Xu, and H.H.P. Fang, Anaerobic Electrochemical Corrosion of Mild Steel in the Presence of Extracellular Polymeric Substances Produced by a Culture Enriched in Sulfate-reducing Bacteria, Environ. Sci. Technol., 2002, 36, p 1720–1727CrossRef
30.
Zurück zum Zitat M. Erbil, Korozyon (Corrosion), Türkiye Korozyon Derneği, Ankara, 2012 (in Turkish) M. Erbil, Korozyon (Corrosion), Türkiye Korozyon Derneği, Ankara, 2012 (in Turkish)
31.
Zurück zum Zitat F. Morrison, Living in a Material World: Proper Selection of the Materials of Construction for Cooling Towers in Commercial HVAC and Industrial Applications, CTI, J., 2008, 29, p 8–33 F. Morrison, Living in a Material World: Proper Selection of the Materials of Construction for Cooling Towers in Commercial HVAC and Industrial Applications, CTI, J., 2008, 29, p 8–33
32.
Zurück zum Zitat Bureau of Energy Efficiency, Cooling Towers: Energy Efficiency in Electrical Utilities, Chapter 7, Ministry of Power, New Delhi, 2004, p 135–151 Bureau of Energy Efficiency, Cooling Towers: Energy Efficiency in Electrical Utilities, Chapter 7, Ministry of Power, New Delhi, 2004, p 135–151
33.
Zurück zum Zitat A. Singh, C. Sharma, and S. Lata, Microbial Influenced Corrosion due to Desulfovibrio desulfuricans, Anti-Corros. Method M., 2011, 58(6), p 315–322CrossRef A. Singh, C. Sharma, and S. Lata, Microbial Influenced Corrosion due to Desulfovibrio desulfuricans, Anti-Corros. Method M., 2011, 58(6), p 315–322CrossRef
34.
Zurück zum Zitat F.A. Lopes, P. Morin, R. Oliveira, and L.F. Melo, Interaction of Desulfovibrio desulfuricans Biofilms with Stainless Steel Surface and its Impact on Bacterial Metabolism, J. Appl. Microbiol., 2006, 101, p 1087–1095CrossRef F.A. Lopes, P. Morin, R. Oliveira, and L.F. Melo, Interaction of Desulfovibrio desulfuricans Biofilms with Stainless Steel Surface and its Impact on Bacterial Metabolism, J. Appl. Microbiol., 2006, 101, p 1087–1095CrossRef
35.
Zurück zum Zitat J.R. Postgate, The sulphate reducing bacteria, 2nd ed., Cambridge University Press, Cambridge, 1984 J.R. Postgate, The sulphate reducing bacteria, 2nd ed., Cambridge University Press, Cambridge, 1984
36.
Zurück zum Zitat E. Ilhan-Sungur, N. Cansever, and A. Cotuk, Microbial Corrosion of Galvanized Steel by a Freshwater Strain of Sulphate Reducing Bacteria (Desulfovibrio sp.), Corros. Sci., 2007, 49, p 1097–1109CrossRef E. Ilhan-Sungur, N. Cansever, and A. Cotuk, Microbial Corrosion of Galvanized Steel by a Freshwater Strain of Sulphate Reducing Bacteria (Desulfovibrio sp.), Corros. Sci., 2007, 49, p 1097–1109CrossRef
37.
Zurück zum Zitat X. Zhang, P.L. Bishop, and B.K. Kinkle, Comparison of Extraction Methods for Quantifying Extracellular Polymers in Biofilms, Water Sci. Technol., 1999, 39(7), p 211–218CrossRef X. Zhang, P.L. Bishop, and B.K. Kinkle, Comparison of Extraction Methods for Quantifying Extracellular Polymers in Biofilms, Water Sci. Technol., 1999, 39(7), p 211–218CrossRef
38.
Zurück zum Zitat M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, and F. Smith, Colorimetric Method for Determination of Sugars and Related Substances, Anal. Chem., 1956, 28, p 350–356CrossRef M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, and F. Smith, Colorimetric Method for Determination of Sugars and Related Substances, Anal. Chem., 1956, 28, p 350–356CrossRef
39.
Zurück zum Zitat O.H. Lowry, N.J. Rosebrough, A.L. Farr, and R.J. Randall, Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, 193(1), p 265–275 O.H. Lowry, N.J. Rosebrough, A.L. Farr, and R.J. Randall, Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, 193(1), p 265–275
40.
Zurück zum Zitat X. Sheng, Y.P. Ting, and S.O. Pehkonen, The Influence of Sulphate-reducing Bacteria Biofilm on the Corrosion of Stainless Steel AISI, 316, Corros. Sci., 2007, 49(5), p 2159–2176CrossRef X. Sheng, Y.P. Ting, and S.O. Pehkonen, The Influence of Sulphate-reducing Bacteria Biofilm on the Corrosion of Stainless Steel AISI, 316, Corros. Sci., 2007, 49(5), p 2159–2176CrossRef
41.
Zurück zum Zitat Practice for Preparing, Cleaning and Evaluating Corrosion Test Specimens, G1-81, Annual Book of ASTM Standards, ASTM, 1986, p 89–93 Practice for Preparing, Cleaning and Evaluating Corrosion Test Specimens, G1-81, Annual Book of ASTM Standards, ASTM, 1986, p 89–93
42.
Zurück zum Zitat American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater, 15th ed., Washington, DC, 1981 American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater, 15th ed., Washington, DC, 1981
43.
Zurück zum Zitat C. Campanac, L. Pineau, A. Payard, G. Baziard-Mouysset, and C. Roques, Interactions between Biocide Cationic Agents and Bacterial Biofilms, Antimicrob. Agents Chemother, 2002, 46(5), p 1469–1474CrossRef C. Campanac, L. Pineau, A. Payard, G. Baziard-Mouysset, and C. Roques, Interactions between Biocide Cationic Agents and Bacterial Biofilms, Antimicrob. Agents Chemother, 2002, 46(5), p 1469–1474CrossRef
44.
Zurück zum Zitat S.J. Yuan and S.O. Pehkonen, AFM Study of Microbial Colonization and its Deleterious Effect on 304 Stainless Steel by Pseudomonas NCIMB 2021 and Desulfovibrio desulfuricans in Simulated Seawater, Corros. Sci., 2009, 51, p 1372–1385CrossRef S.J. Yuan and S.O. Pehkonen, AFM Study of Microbial Colonization and its Deleterious Effect on 304 Stainless Steel by Pseudomonas NCIMB 2021 and Desulfovibrio desulfuricans in Simulated Seawater, Corros. Sci., 2009, 51, p 1372–1385CrossRef
45.
Zurück zum Zitat C.M. Santegoeds, T.G. Ferdelman, G. Muyzer, and D. De Beer, Structural and Functional Dynamics of Sulfate-reducing Populations in Bacterial Biofilms, Appl. Environ. Microbiol., 1998, 64(10), p 3731–3739 C.M. Santegoeds, T.G. Ferdelman, G. Muyzer, and D. De Beer, Structural and Functional Dynamics of Sulfate-reducing Populations in Bacterial Biofilms, Appl. Environ. Microbiol., 1998, 64(10), p 3731–3739
46.
Zurück zum Zitat S. Lata, C. Sharma, and A. Singh, Microbial Influenced Corrosion by Thermophilic Bacteria, Cent. Eur. J. Eng., 2012, 2(1), p 113–122 S. Lata, C. Sharma, and A. Singh, Microbial Influenced Corrosion by Thermophilic Bacteria, Cent. Eur. J. Eng., 2012, 2(1), p 113–122
47.
Zurück zum Zitat E. Ilhan-Sungur, İ. Türetgen, R. Javaherdashti, and A. Çotuk, Monitoring and Disinfection of Biofilm-associated Sulfate Reducing Bacteria on Different Substrata in a Simulated Recirculating Cooling Tower System, Turk. J. Biol., 2010, 34, p 389–397 E. Ilhan-Sungur, İ. Türetgen, R. Javaherdashti, and A. Çotuk, Monitoring and Disinfection of Biofilm-associated Sulfate Reducing Bacteria on Different Substrata in a Simulated Recirculating Cooling Tower System, Turk. J. Biol., 2010, 34, p 389–397
48.
Zurück zum Zitat D. Ozuolmez and A. Cotuk, Biofilm Formation on Galvanized Steel by SRB Isolate Obtained from Cooling Tower Water, IUFS J. Biol., 2011, 70(2), p 35–42 D. Ozuolmez and A. Cotuk, Biofilm Formation on Galvanized Steel by SRB Isolate Obtained from Cooling Tower Water, IUFS J. Biol., 2011, 70(2), p 35–42
49.
Zurück zum Zitat P. Stoodley, K. Sauer, D.G. Davies, and J.W. Costerton, Biofilms as Complex Differentiated Communities, Annu. Rev. Microbiol., 2002, 56, p 187–209CrossRef P. Stoodley, K. Sauer, D.G. Davies, and J.W. Costerton, Biofilms as Complex Differentiated Communities, Annu. Rev. Microbiol., 2002, 56, p 187–209CrossRef
50.
Zurück zum Zitat B. Minnoş, E. Ilhan-Sungur, A. Çotuk, and N. Doğruöz, Güngör and N, Cansever, The Corrosion Behaviour of Galvanized Steel in Cooling Tower Water Containing a Biocide and a Corrosion Inhibitor, Biofouling, 2013, 29(3), p 223–235 B. Minnoş, E. Ilhan-Sungur, A. Çotuk, and N. Doğruöz, Güngör and N, Cansever, The Corrosion Behaviour of Galvanized Steel in Cooling Tower Water Containing a Biocide and a Corrosion Inhibitor, Biofouling, 2013, 29(3), p 223–235
51.
Zurück zum Zitat G.H. John, R.K. Noel, H.A.S. Peter, T.S. James, and T.W. Stanley, Bergey’s Manual of Determinative Bacteriology, 9th ed., Williams & Wilkins, Baltimore, 1994 G.H. John, R.K. Noel, H.A.S. Peter, T.S. James, and T.W. Stanley, Bergey’s Manual of Determinative Bacteriology, 9th ed., Williams & Wilkins, Baltimore, 1994
52.
Zurück zum Zitat G.M. Gadd, Metals and Microorganisms: A problem of Definition, FEMS Microbiol. Lett., 1992, 100(1–3), p 197–203CrossRef G.M. Gadd, Metals and Microorganisms: A problem of Definition, FEMS Microbiol. Lett., 1992, 100(1–3), p 197–203CrossRef
53.
Zurück zum Zitat C. White and G.M. Gadd, Mixed Sulphate-reducing Bacterial Cultures for Bioprecipitation of Toxic Metals: Factorial and Response-surface Analysis of the Effects of Dilution Rate, Sulphate Substr Conc., Microbiol., 1996, 142, p 2197–2205 C. White and G.M. Gadd, Mixed Sulphate-reducing Bacterial Cultures for Bioprecipitation of Toxic Metals: Factorial and Response-surface Analysis of the Effects of Dilution Rate, Sulphate Substr Conc., Microbiol., 1996, 142, p 2197–2205
54.
Zurück zum Zitat M.N. Chandraprabha, N. Ahalya, M. Jyothi, and K. Natarajan, Studies on Bioremoval of Copper and Zinc by Desulfovibrio desulfuricans, J. Biochem. Technol., 2012, 3(5), p 147–150 M.N. Chandraprabha, N. Ahalya, M. Jyothi, and K. Natarajan, Studies on Bioremoval of Copper and Zinc by Desulfovibrio desulfuricans, J. Biochem. Technol., 2012, 3(5), p 147–150
55.
Zurück zum Zitat C. Xu, Y. Zhang, G. Cheng, and W. Zhu, Localized Corrosion Behavior of 316L Stainless Steel in the Presence of Sulfate-reducing and Iron-oxidizing Bacteria, Mater. Sci. Eng., 2007, 443(1–2), p 235–241CrossRef C. Xu, Y. Zhang, G. Cheng, and W. Zhu, Localized Corrosion Behavior of 316L Stainless Steel in the Presence of Sulfate-reducing and Iron-oxidizing Bacteria, Mater. Sci. Eng., 2007, 443(1–2), p 235–241CrossRef
56.
Zurück zum Zitat S. Lata, C. Sharma, and A.K. Singh, Comparison of Biocorrosion due to Desulfovibrio desulfuricans and Desulfotomaculum nigrificans Bacteria, J. Mater. Eng. Perform., 2013, 22, p 463–469CrossRef S. Lata, C. Sharma, and A.K. Singh, Comparison of Biocorrosion due to Desulfovibrio desulfuricans and Desulfotomaculum nigrificans Bacteria, J. Mater. Eng. Perform., 2013, 22, p 463–469CrossRef
57.
Zurück zum Zitat T. Unsal-Istek, S. Arkan, E. Ilhan-Sungur and N. Cansever, The Effects of Ag-Cu Ions on the Microbial Corrosion of 316L Stainless Steel in the Presence of Desulfovibrio sp., European Corrosion Congress, EUROCORR’2014, Pisa, Italy, 2014 T. Unsal-Istek, S. Arkan, E. Ilhan-Sungur and N. Cansever, The Effects of Ag-Cu Ions on the Microbial Corrosion of 316L Stainless Steel in the Presence of Desulfovibrio sp., European Corrosion Congress, EUROCORR’2014, Pisa, Italy, 2014
58.
Zurück zum Zitat W.P. Iverson, Direct Evidence for the Cathodic Depolarization Theory of Bacterial Corrosion, Science, 1966, 151(3713), p 986–988CrossRef W.P. Iverson, Direct Evidence for the Cathodic Depolarization Theory of Bacterial Corrosion, Science, 1966, 151(3713), p 986–988CrossRef
59.
Zurück zum Zitat W.P. Iverson, Corrosion of Iron and Formation of Iron Phosphide by Desulfovibrio desulfuricans, Nature, 1968, 217, p 1265–1267CrossRef W.P. Iverson, Corrosion of Iron and Formation of Iron Phosphide by Desulfovibrio desulfuricans, Nature, 1968, 217, p 1265–1267CrossRef
60.
Zurück zum Zitat F. Kuang, J. Wang, L. Yan, and D. Zhang, Effects of Sulfate-reducing Bacteria on the Corrosion Behavior of Carbon Steel, Electrochim. Acta, 2007, 52(20), p 6084–6088CrossRef F. Kuang, J. Wang, L. Yan, and D. Zhang, Effects of Sulfate-reducing Bacteria on the Corrosion Behavior of Carbon Steel, Electrochim. Acta, 2007, 52(20), p 6084–6088CrossRef
61.
Zurück zum Zitat F.L. Roe, Z. Lewandowski, and T. Funk, Simulating Microbiologically Influenced Corrosion by Depositing Extracellular Biopolymer on Mild Steel Surfaces, Corrosion, 1996, 52(10), p 744–752CrossRef F.L. Roe, Z. Lewandowski, and T. Funk, Simulating Microbiologically Influenced Corrosion by Depositing Extracellular Biopolymer on Mild Steel Surfaces, Corrosion, 1996, 52(10), p 744–752CrossRef
62.
Zurück zum Zitat H.H.P. Fang, L.C. Xu, and K.Y. Chan, Effects of Toxic Metals and Chemicals on Biofilm and Biocorrosion, Water Res., 2002, 36, p 4709–4716CrossRef H.H.P. Fang, L.C. Xu, and K.Y. Chan, Effects of Toxic Metals and Chemicals on Biofilm and Biocorrosion, Water Res., 2002, 36, p 4709–4716CrossRef
63.
Zurück zum Zitat I.B. Beech and J. Sunner, Biocorrosion: Towards Under-standing Interactions between Biofilms and Metals, Curr. Opin. Biotechnol., 2004, 15, p 181–186CrossRef I.B. Beech and J. Sunner, Biocorrosion: Towards Under-standing Interactions between Biofilms and Metals, Curr. Opin. Biotechnol., 2004, 15, p 181–186CrossRef
64.
Zurück zum Zitat J. Duan, B. Hou, and Z. Yu, Characteristics of Sulfide Corrosion Products on 316L Stainless Steel Surfaces in the Presence of Sulfate-reducing Bacteria, Mater. Sci. Eng., 2006, 26, p 624–629CrossRef J. Duan, B. Hou, and Z. Yu, Characteristics of Sulfide Corrosion Products on 316L Stainless Steel Surfaces in the Presence of Sulfate-reducing Bacteria, Mater. Sci. Eng., 2006, 26, p 624–629CrossRef
65.
Zurück zum Zitat V. Zinkevich, I. Bogdarina, H. Kang, M.A.W. Hill, R. Tapper, and I.B. Beech, Characterisation of Exopolymers Produced by Different Isolates of Marine Sulphate-reducing Bacteria, Int. Biodeter. Biodegrad., 1996, 37(3–4), p 163–172CrossRef V. Zinkevich, I. Bogdarina, H. Kang, M.A.W. Hill, R. Tapper, and I.B. Beech, Characterisation of Exopolymers Produced by Different Isolates of Marine Sulphate-reducing Bacteria, Int. Biodeter. Biodegrad., 1996, 37(3–4), p 163–172CrossRef
66.
Zurück zum Zitat S. Da Silva, R. Basseguy, and A. Bergel, Electron Transfer between Hydrogenase and 316L Stainless Steel: Identification of a Hydrogenase-catalyzed Cathodic Reaction in Anaerobic MIC, J. Electroanal. Chem., 2004, 561, p 93–102CrossRef S. Da Silva, R. Basseguy, and A. Bergel, Electron Transfer between Hydrogenase and 316L Stainless Steel: Identification of a Hydrogenase-catalyzed Cathodic Reaction in Anaerobic MIC, J. Electroanal. Chem., 2004, 561, p 93–102CrossRef
67.
Zurück zum Zitat A.E. Broo, B. Berghult, and T. Hedberg, Copper Corrosion in Drinking Water Distribution Systems- The Influence of Water Quality, Corros. Sci., 1997, 39, p 1119–1132CrossRef A.E. Broo, B. Berghult, and T. Hedberg, Copper Corrosion in Drinking Water Distribution Systems- The Influence of Water Quality, Corros. Sci., 1997, 39, p 1119–1132CrossRef
68.
Zurück zum Zitat A.E. Broo, B. Berghult, and T. Hedberg, Drinking Water Distribution- The Effect of Natural Organic Matter (NOM) on the Corrosion of Fe and Copper, Water Sci. Technol., 1999, 40, p 17–24 A.E. Broo, B. Berghult, and T. Hedberg, Drinking Water Distribution- The Effect of Natural Organic Matter (NOM) on the Corrosion of Fe and Copper, Water Sci. Technol., 1999, 40, p 17–24
69.
Zurück zum Zitat Z. Tang, S. Hong, W. Xiao, and J. Taylor, Characteristics of Fe Corrosion Scales Established under Blending of Ground Surface and Saline Waters and Their Impacts on Fe Release in the Pipe Distribution System, Corros. Sci., 2006, 48, p 322–342CrossRef Z. Tang, S. Hong, W. Xiao, and J. Taylor, Characteristics of Fe Corrosion Scales Established under Blending of Ground Surface and Saline Waters and Their Impacts on Fe Release in the Pipe Distribution System, Corros. Sci., 2006, 48, p 322–342CrossRef
70.
Zurück zum Zitat Electric Power Research Institute, Use of Degraded Water Sources as Cooling Water in Power Plants, Consultant Report, P500-03-110, 2003 Electric Power Research Institute, Use of Degraded Water Sources as Cooling Water in Power Plants, Consultant Report, P500-03-110, 2003
71.
Zurück zum Zitat I. Olefjord, B. Brox, and U. Jelvestam, Surface Composition of Stainless Steels during Anodic Dissolution and Passivation Studied by ESCA, J. Electrochem. Soc., 1985, 132(12), p 2854–2861CrossRef I. Olefjord, B. Brox, and U. Jelvestam, Surface Composition of Stainless Steels during Anodic Dissolution and Passivation Studied by ESCA, J. Electrochem. Soc., 1985, 132(12), p 2854–2861CrossRef
72.
Zurück zum Zitat M.T. Madigan and J.M. Martinko, Brock Biology of Microorganisms, 11th ed., Prentice Hall, London, 2005 M.T. Madigan and J.M. Martinko, Brock Biology of Microorganisms, 11th ed., Prentice Hall, London, 2005
73.
Zurück zum Zitat H.C. Flemming, Biofouling in Water Systems- Cases, Causes and Countermeasures, Appl. Microbiol. Biotechnol., 2002, 59(6), p 629–640CrossRef H.C. Flemming, Biofouling in Water Systems- Cases, Causes and Countermeasures, Appl. Microbiol. Biotechnol., 2002, 59(6), p 629–640CrossRef
74.
Zurück zum Zitat R.M. Donlan, Biofilms: Microbial Life on Surfaces, Emerg. Infect. Dis., 2002, 8(9), p 881–890CrossRef R.M. Donlan, Biofilms: Microbial Life on Surfaces, Emerg. Infect. Dis., 2002, 8(9), p 881–890CrossRef
75.
Zurück zum Zitat H.A. Videla and L.K. Herrera, Microbiologically Influenced Corrosion: Looking to the Future, Int. Microbiol., 2005, 8(3), p 169–180 H.A. Videla and L.K. Herrera, Microbiologically Influenced Corrosion: Looking to the Future, Int. Microbiol., 2005, 8(3), p 169–180
76.
Zurück zum Zitat G. Chen and C.R. Clayton, Influence of Sulfate-reducing Bacteria on the Passivity of Type 304 Austenitic Stainless Steel, J. Electrochem. Soc., 1997, 144(9), p 3140–3146CrossRef G. Chen and C.R. Clayton, Influence of Sulfate-reducing Bacteria on the Passivity of Type 304 Austenitic Stainless Steel, J. Electrochem. Soc., 1997, 144(9), p 3140–3146CrossRef
Metadaten
Titel
Corrosive Metabolic Activity of Desulfovibrio sp. on 316L Stainless Steel
verfasst von
Simge Arkan
Esra Ilhan-Sungur
Nurhan Cansever
Publikationsdatum
11.10.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2371-2

Weitere Artikel der Ausgabe 12/2016

Journal of Materials Engineering and Performance 12/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.