Skip to main content
Erschienen in: Neural Processing Letters 1/2023

12.09.2022

Counter Propagation Network Based Extreme Learning Machine

verfasst von: Gökhan Kayhan, İsmail İşeri

Erschienen in: Neural Processing Letters | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The extreme learning machine (ELM), a new learning algorithm for single hidden layer feedforward neural networks (SLFN), has drawn interest of a large number of researchers, especially due to its training speed and good generalization performances compared to known machine learning methods. The ELM model generates a solution to a linear optimization problem for the hidden layer output weights by randomly generating input weights and biases, instead of iteratively adjusting the network parameters (weights and biases) such as the backpropagation neural network model using the backpropagation algorithm and gradient descent learning. However, random determination of input weights and hidden layer bias can result in non-optimal parameters that have an adverse impact on the final results or require a higher number of hidden nodes for the neural network. In this study, a new hybrid method is proposed to overcome the drawbacks caused by non-optimal input weights and hidden biases. This hybrid method, which is called CPN-ELM algorithm, uses the counter propagation network (CPN) model to systematically optimize input weights, hidden layer neurons and hidden biases. The performance of CPN-ELM compared to traditional ELM method was examined on three benchmark regression datasets and we observed that the model produced higher accuracy values for each datasets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bi X, Zhao X, Huang H et al (2020) Functional brain network classification for Alzheimer’s disease detection with deep features and extreme learning machine. Cogn Comput 12:513–527CrossRef Bi X, Zhao X, Huang H et al (2020) Functional brain network classification for Alzheimer’s disease detection with deep features and extreme learning machine. Cogn Comput 12:513–527CrossRef
2.
Zurück zum Zitat Cao J, Lin Z, Huang GB (2012) Self-adaptive evolutionary extreme learning machine. Neural Process Lett 36:285–305CrossRef Cao J, Lin Z, Huang GB (2012) Self-adaptive evolutionary extreme learning machine. Neural Process Lett 36:285–305CrossRef
4.
Zurück zum Zitat Ding S, Zhao H, Zhang Y, Xu X, Nie R (2015) Extreme learning machine: algorithm, theory and applications. Artif Intell Rev 44:103–115CrossRef Ding S, Zhao H, Zhang Y, Xu X, Nie R (2015) Extreme learning machine: algorithm, theory and applications. Artif Intell Rev 44:103–115CrossRef
5.
Zurück zum Zitat Ertugrul OF (2020) A novel randomized machine learning approach: reservoir computing extreme learning machine. J Appl Soft Comput 94:106433CrossRef Ertugrul OF (2020) A novel randomized machine learning approach: reservoir computing extreme learning machine. J Appl Soft Comput 94:106433CrossRef
6.
Zurück zum Zitat Fan Q, Fan T (2021) A hybrid model of extreme learning machine based on bat and cuckoo search algorithm for regression and multiclass classification. J Math Fan Q, Fan T (2021) A hybrid model of extreme learning machine based on bat and cuckoo search algorithm for regression and multiclass classification. J Math
7.
Zurück zum Zitat Haykin S (2004) N. network: a comprehensive foundation. Neural Netw 2:41 Haykin S (2004) N. network: a comprehensive foundation. Neural Netw 2:41
8.
Zurück zum Zitat Huang BG, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501CrossRef Huang BG, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501CrossRef
9.
Zurück zum Zitat Huang BG, Wang DH, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2:107–122CrossRef Huang BG, Wang DH, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2:107–122CrossRef
10.
Zurück zum Zitat Iseri I, Oz C (2014) Computer aided detection of microcalcification clusters in mammogram images with machine learning approach. Optoelectron Adv Mater Rapid Commun 8:689–695 Iseri I, Oz C (2014) Computer aided detection of microcalcification clusters in mammogram images with machine learning approach. Optoelectron Adv Mater Rapid Commun 8:689–695
11.
Zurück zum Zitat Jin Z, Zhou G, Gao D, Zhang Y (2020) EEG classification using sparse Bayesian extreme learning machine for brain–computer interface. Neural Comput Appl 35:6601–6609CrossRef Jin Z, Zhou G, Gao D, Zhang Y (2020) EEG classification using sparse Bayesian extreme learning machine for brain–computer interface. Neural Comput Appl 35:6601–6609CrossRef
12.
Zurück zum Zitat Kuang L, Shi P, Hua C, Chen B, Zhu H (2020) An enhanced extreme learning machine for dissolved oxygen prediction in wireless sensor networks. IEEE Access 8:198730CrossRef Kuang L, Shi P, Hua C, Chen B, Zhu H (2020) An enhanced extreme learning machine for dissolved oxygen prediction in wireless sensor networks. IEEE Access 8:198730CrossRef
13.
Zurück zum Zitat Li H-T, Chou C-Y, Chen Y-T, Wang S-H, Wu A-Y (2019) Robust and light weight ensemble extreme learning machine engine based on eigenspace domain for compressed learning. IEEE Trans Circuits Syst I Regul Pap 66(12):4699–4712CrossRef Li H-T, Chou C-Y, Chen Y-T, Wang S-H, Wu A-Y (2019) Robust and light weight ensemble extreme learning machine engine based on eigenspace domain for compressed learning. IEEE Trans Circuits Syst I Regul Pap 66(12):4699–4712CrossRef
14.
Zurück zum Zitat Linkens DA, Chen MY (1999) Input selection and partition validation for fuzzy modelling using neural network. Fuzzy Sets Syst 107:299–308MathSciNetCrossRef Linkens DA, Chen MY (1999) Input selection and partition validation for fuzzy modelling using neural network. Fuzzy Sets Syst 107:299–308MathSciNetCrossRef
15.
Zurück zum Zitat Liu X, Gao C, Li P (2012) A comparative analysis of support vector machines and extreme learning machines. Neural Netw 33:58–66CrossRefMATH Liu X, Gao C, Li P (2012) A comparative analysis of support vector machines and extreme learning machines. Neural Netw 33:58–66CrossRefMATH
16.
Zurück zum Zitat Nie J, Linkens DA (1994) Fast self-learning multivariable fuzzy controllers constructed from a modified CPN network. Int J Control 60:369–393MathSciNetCrossRefMATH Nie J, Linkens DA (1994) Fast self-learning multivariable fuzzy controllers constructed from a modified CPN network. Int J Control 60:369–393MathSciNetCrossRefMATH
17.
Zurück zum Zitat Odabas MS, Kayhan G, Ergun E, Senyer N (2016) Using artificial neural network and multiple linear regression for predicting the chlorophyll concentration index of Saint John’s Wort leaves. Commun Soil Sci Plant Anal 47:237–245CrossRef Odabas MS, Kayhan G, Ergun E, Senyer N (2016) Using artificial neural network and multiple linear regression for predicting the chlorophyll concentration index of Saint John’s Wort leaves. Commun Soil Sci Plant Anal 47:237–245CrossRef
18.
Zurück zum Zitat Saraswathi S, Sundaram S, Sundararajan N, Zimmermann M, Nilsen-Hamilton M (2011) ICGA-PSO-ELM approach for accurate multiclass cancer classification resulting in reduced gene sets in which genes encoding secreted proteins are highly represented. IEEE/ACM Trans Comput Biol Bioinform 8:452–463CrossRef Saraswathi S, Sundaram S, Sundararajan N, Zimmermann M, Nilsen-Hamilton M (2011) ICGA-PSO-ELM approach for accurate multiclass cancer classification resulting in reduced gene sets in which genes encoding secreted proteins are highly represented. IEEE/ACM Trans Comput Biol Bioinform 8:452–463CrossRef
19.
Zurück zum Zitat Statnikov A, Wang L, Aliferis CF (2008) A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinform 9:1–10CrossRef Statnikov A, Wang L, Aliferis CF (2008) A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinform 9:1–10CrossRef
20.
Zurück zum Zitat Shehab MA, Kahraman N (2020) A weighted voting ensemble of efficient regularized extreme learning machine. Comput Electr Eng 85:106639CrossRef Shehab MA, Kahraman N (2020) A weighted voting ensemble of efficient regularized extreme learning machine. Comput Electr Eng 85:106639CrossRef
21.
Zurück zum Zitat Song S, Wang M, Lin Y (2020) An improved algorithm for incremental extreme learning machine. Syst Sci Control Eng 8:308–317CrossRef Song S, Wang M, Lin Y (2020) An improved algorithm for incremental extreme learning machine. Syst Sci Control Eng 8:308–317CrossRef
22.
Zurück zum Zitat Wang J, Lu S, Wang SH et al (2021) A review on extreme learning machine. Multimed Tools Appl 22:1–50 Wang J, Lu S, Wang SH et al (2021) A review on extreme learning machine. Multimed Tools Appl 22:1–50
23.
Zurück zum Zitat Wu L, Huang G, Fan J, Ma X, Zhou H, Zeng W (2020) Hybrid extreme learning machine with meta-heuristic algorithms for monthly pan evaporation prediction. Comput Electron Agric 168:105115CrossRef Wu L, Huang G, Fan J, Ma X, Zhou H, Zeng W (2020) Hybrid extreme learning machine with meta-heuristic algorithms for monthly pan evaporation prediction. Comput Electron Agric 168:105115CrossRef
24.
Zurück zum Zitat Wu T, Yao M, Yang J (2017) Dolphin swarm extreme learning machine. Cognit Comput 9:275–284CrossRef Wu T, Yao M, Yang J (2017) Dolphin swarm extreme learning machine. Cognit Comput 9:275–284CrossRef
25.
Zurück zum Zitat Xue X, Yao M, Wu Z, Yang J (2014) Genetic ensemble of extreme learning machine. Neurocomputing 129:175–184CrossRef Xue X, Yao M, Wu Z, Yang J (2014) Genetic ensemble of extreme learning machine. Neurocomputing 129:175–184CrossRef
26.
Zurück zum Zitat Zhang Y, Wu J, Cai Z, Zhang P, Chen L (2016) Memetic extreme learning machine. Pattern Recognit 58:135–148CrossRef Zhang Y, Wu J, Cai Z, Zhang P, Chen L (2016) Memetic extreme learning machine. Pattern Recognit 58:135–148CrossRef
27.
Zurück zum Zitat Zhu QY, Qin AK, Suganthan PN, Huang GB (2005) Evolutionary extreme learning machine. Pattern Recognit 38:1759–1763CrossRefMATH Zhu QY, Qin AK, Suganthan PN, Huang GB (2005) Evolutionary extreme learning machine. Pattern Recognit 38:1759–1763CrossRefMATH
Metadaten
Titel
Counter Propagation Network Based Extreme Learning Machine
verfasst von
Gökhan Kayhan
İsmail İşeri
Publikationsdatum
12.09.2022
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 1/2023
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-022-11021-2

Weitere Artikel der Ausgabe 1/2023

Neural Processing Letters 1/2023 Zur Ausgabe

Neuer Inhalt