Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2019

24.06.2019

Creep Deformation and Rupture Behavior of P92 Steel Weld Joint Fabricated by NG-TIG Welding Process

verfasst von: T. Sakthivel, G. Sasikala, Manmath Kumar Dash, P. Syamala Rao

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The creep deformation and rupture behavior of P92 steel weld joint fabricated by narrow-gap TIG (NG-TIG) welding process have been investigated at 923 K over a stress range of 80-140 MPa. The prior-austenite grain size, M23C6 precipitate size and hardness have been found to vary significantly in the weld joint. The reduction in hardness from weld metal to base metal with a trough at the outer edge of heat-affected zone (HAZ) has been observed. Coarsening of M23C6 precipitate, recovery of martensite lath dislocation structure and formation of subgrain structure led to lower hardness in the intercritical HAZ. The creep rupture life of NG-TIG weld joint was lower than the base metal, the difference in creep rupture life between base metal and weld joint has been increased significantly with decrease in applied stress. The fracture location in the joint changed from base metal at high-stress regime to the fine grain (FG) HAZ (Type IV cracking) under lower stress level. Fracture in the FGHAZ evidenced the significant reduction in ductility, localized deformation and extensive localized cavitation. Extensive Laves phase formation with significant loss of solution strengthening contribution from tungsten and coarsening of M23C6 precipitate with prolonged creep exposure led to reduction in hardness and more extensive cavitation in the FGHAZ resulting in premature Type IV failure of the weld joint. Weld strength reduction factor about 0.59 has been evaluated for 105 h at 923 K.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P.J. Ennis, A. Zielinska-Lipiec, O. Wachter, and A. Czyrska-Filemonowicz, Microstructural Stability and Creep Rupture Strength of the Martensitic steel P92 for Advanced Power Plant, Acta Mater., 1997, 45(12), p 4901–4907CrossRef P.J. Ennis, A. Zielinska-Lipiec, O. Wachter, and A. Czyrska-Filemonowicz, Microstructural Stability and Creep Rupture Strength of the Martensitic steel P92 for Advanced Power Plant, Acta Mater., 1997, 45(12), p 4901–4907CrossRef
2.
Zurück zum Zitat K. Maruyama, K. Sawada, and J. Koike, Strengthening Mechanisms of Creep Resistant Tempered Martensitic Steel, Iron Steel Inst. Jpn. Int., 2001, 41(6), p 641–653CrossRef K. Maruyama, K. Sawada, and J. Koike, Strengthening Mechanisms of Creep Resistant Tempered Martensitic Steel, Iron Steel Inst. Jpn. Int., 2001, 41(6), p 641–653CrossRef
3.
Zurück zum Zitat V. Dudko, A. Belyakov, D. Molodov, and R. Kaibyshev, Microstructure Evolution and Pinning of Boundaries by Precipitates in a 9 pct Cr Heat Resistant Steel During Creep, Metall. Mater. Trans. A, 2013, 44, p S162–S172CrossRef V. Dudko, A. Belyakov, D. Molodov, and R. Kaibyshev, Microstructure Evolution and Pinning of Boundaries by Precipitates in a 9 pct Cr Heat Resistant Steel During Creep, Metall. Mater. Trans. A, 2013, 44, p S162–S172CrossRef
4.
Zurück zum Zitat I. Fedorova, A. Kipelova, A. Belyakov, and R. Kaibyshev, Microstructure Evolution in an Advanced 9 pct Cr Martensitic Steel During Creep at 923 K (650 °C), Metall. Mater. Trans. A, 2013, 44, p S128–S135CrossRef I. Fedorova, A. Kipelova, A. Belyakov, and R. Kaibyshev, Microstructure Evolution in an Advanced 9 pct Cr Martensitic Steel During Creep at 923 K (650 °C), Metall. Mater. Trans. A, 2013, 44, p S128–S135CrossRef
5.
Zurück zum Zitat F. Abe, Creep Rates and Strengthening Mechanisms in Tungsten-Strengthened 9Cr Steels, Mater. Sci. Eng. A, 2001, 319–321, p 770–773CrossRef F. Abe, Creep Rates and Strengthening Mechanisms in Tungsten-Strengthened 9Cr Steels, Mater. Sci. Eng. A, 2001, 319–321, p 770–773CrossRef
6.
Zurück zum Zitat K. Laha, K.S. Chandravathi, P. Parameswaran, K. Bhanu Sankara Rao, and S.L. Mannan, Characterization of Microstructures Across the Heat-Affected Zone of the Modified 9Cr-1Mo Weld Joint to Understand Its Role in Promoting Type IV Cracking, Metall. Mater. Trans. A, 2007, 38, p 58–68CrossRef K. Laha, K.S. Chandravathi, P. Parameswaran, K. Bhanu Sankara Rao, and S.L. Mannan, Characterization of Microstructures Across the Heat-Affected Zone of the Modified 9Cr-1Mo Weld Joint to Understand Its Role in Promoting Type IV Cracking, Metall. Mater. Trans. A, 2007, 38, p 58–68CrossRef
8.
Zurück zum Zitat L. Falat, A. Vyrostkova, V. Homolova, and M. Svoboda, Creep Deformation and Failure of E911/E911 and P92/P92 Similar Weld-Joints, Eng. Fail. Anal., 2009, 16, p 2114–2120CrossRef L. Falat, A. Vyrostkova, V. Homolova, and M. Svoboda, Creep Deformation and Failure of E911/E911 and P92/P92 Similar Weld-Joints, Eng. Fail. Anal., 2009, 16, p 2114–2120CrossRef
9.
Zurück zum Zitat V. Sklenička, K. Kuchařová, M. Svobodová, M. Kvapilová, P. Král, and L. Horváth, Creep Properties in Similar Weld Joint of a Thick-Walled P92 Steel Pipe, Mater. Charact., 2016, 119, p 1–12CrossRef V. Sklenička, K. Kuchařová, M. Svobodová, M. Kvapilová, P. Král, and L. Horváth, Creep Properties in Similar Weld Joint of a Thick-Walled P92 Steel Pipe, Mater. Charact., 2016, 119, p 1–12CrossRef
10.
Zurück zum Zitat X. Wang, Q. Pan, Y. Ren, W. Shang, H. Zeng, and H. Liu, Microstructure and Type IV Cracking Behavior of HAZ in P92 Steel Weldment, Mater. Sci. Eng. A, 2012, 552, p 493–501CrossRef X. Wang, Q. Pan, Y. Ren, W. Shang, H. Zeng, and H. Liu, Microstructure and Type IV Cracking Behavior of HAZ in P92 Steel Weldment, Mater. Sci. Eng. A, 2012, 552, p 493–501CrossRef
11.
Zurück zum Zitat X. Xu, G.D. West, J.A. Sifert, J.D. Parker, and R.C. Thomson, The Influence of Thermal Cycles on the Microstructure of Grade 92 Steel, Metall. Mater. Trans. A, 2017, 48A, p 5396–5414CrossRef X. Xu, G.D. West, J.A. Sifert, J.D. Parker, and R.C. Thomson, The Influence of Thermal Cycles on the Microstructure of Grade 92 Steel, Metall. Mater. Trans. A, 2017, 48A, p 5396–5414CrossRef
12.
Zurück zum Zitat F. Masuyama, Effect of Specimen Size and Shape on Creep Rupture Behavior of Creep Strength Enhanced Ferritic Steel Welds, Int. J. Press. Vessels Pip., 2010, 87, p 617–623CrossRef F. Masuyama, Effect of Specimen Size and Shape on Creep Rupture Behavior of Creep Strength Enhanced Ferritic Steel Welds, Int. J. Press. Vessels Pip., 2010, 87, p 617–623CrossRef
13.
Zurück zum Zitat K. Sawada, H. Hongo, T. Watanabe, and M. Tabuchi, Analysis of the microstructure near the crack tip of ASME Gr92 steel after creep crack growth, Mater. Charact., 2010, 61, p 1097–1102CrossRef K. Sawada, H. Hongo, T. Watanabe, and M. Tabuchi, Analysis of the microstructure near the crack tip of ASME Gr92 steel after creep crack growth, Mater. Charact., 2010, 61, p 1097–1102CrossRef
14.
Zurück zum Zitat H. Naoi, M. Ohgami, S. Araki, T. Ogawa, H. Yasuda, H. Masumoto, and T. Fujita, Development of High-Strength Ferritic Steel NF616 for Boiler Tubes, Nippon Steel Technical Report, No. 50, 1991, p 7–13 H. Naoi, M. Ohgami, S. Araki, T. Ogawa, H. Yasuda, H. Masumoto, and T. Fujita, Development of High-Strength Ferritic Steel NF616 for Boiler Tubes, Nippon Steel Technical Report, No. 50, 1991, p 7–13
15.
Zurück zum Zitat M. Ohgami, H. Mimura, H. Naoi, T. Ikemoto, S. Kinbara, and T. Fujita, Development of 9CrW Tube, Pipe and Forging for Ultra Supercritical Power Plant Boilers, Nippon Steel Technical Report, No. 72, 1997, p 59–64 M. Ohgami, H. Mimura, H. Naoi, T. Ikemoto, S. Kinbara, and T. Fujita, Development of 9CrW Tube, Pipe and Forging for Ultra Supercritical Power Plant Boilers, Nippon Steel Technical Report, No. 72, 1997, p 59–64
16.
Zurück zum Zitat Y. Hasegawa, H. Morimoto, Microstructure and Precipitates of 9Cr-1Mo-NbV-B Steel Creep-Ruptured at 600 °C for 296 kh, in Proceedings of Creep and Fracture of Engineering Materials and Structures (Creep2012), The Japan Institute of Metals, 2012, B38. Y. Hasegawa, H. Morimoto, Microstructure and Precipitates of 9Cr-1Mo-NbV-B Steel Creep-Ruptured at 600 °C for 296 kh, in Proceedings of Creep and Fracture of Engineering Materials and Structures (Creep2012), The Japan Institute of Metals, 2012, B38.
17.
Zurück zum Zitat M. Yurechko, C. Schroer, A. Skrypnik, O. Wedemeyer, and J. Konys, Creep-to-Rupture of the Steel P92 at 650 °C in Oxygen-Controlled Stagnant Lead in Comparison to Air, J. Nucl. Mater., 2013, 432, p 78–86CrossRef M. Yurechko, C. Schroer, A. Skrypnik, O. Wedemeyer, and J. Konys, Creep-to-Rupture of the Steel P92 at 650 °C in Oxygen-Controlled Stagnant Lead in Comparison to Air, J. Nucl. Mater., 2013, 432, p 78–86CrossRef
18.
Zurück zum Zitat J. Parker, Factors Affecting Type IV Creep Damage in Grade 91 Steel Welds, Mater. Sci. Eng. A, 2013, 578, p 430–437CrossRef J. Parker, Factors Affecting Type IV Creep Damage in Grade 91 Steel Welds, Mater. Sci. Eng. A, 2013, 578, p 430–437CrossRef
19.
Zurück zum Zitat T. Sakthivel, M. Vasudevan, K. Laha, P. Parameswaran, K.S. Chandravathi, S. Panneer Selvi, V. Maduraimuthu, and M.D. Mathew, Creep Rupture Behavior of 9Cr–1.8W–0.5Mo–VNb (ASME Grade 92) Ferritic Steel Weld Joint, Mater. Sci. Eng. A, 2014, 591, p 111–120CrossRef T. Sakthivel, M. Vasudevan, K. Laha, P. Parameswaran, K.S. Chandravathi, S. Panneer Selvi, V. Maduraimuthu, and M.D. Mathew, Creep Rupture Behavior of 9Cr–1.8W–0.5Mo–VNb (ASME Grade 92) Ferritic Steel Weld Joint, Mater. Sci. Eng. A, 2014, 591, p 111–120CrossRef
20.
Zurück zum Zitat M. Yoshizawa, M. Igarashi, K. Moriguchi, A. Iseda, H. Ghassemi Armaki, and K. Maruyama, Effect of Precipitates on Long-Term Creep Deformation Properties of P92 and P122 Type Advanced Ferritic Steels for USC Power Plants, Mater. Sci. Eng. A, 2009, 510–511, p 162–168CrossRef M. Yoshizawa, M. Igarashi, K. Moriguchi, A. Iseda, H. Ghassemi Armaki, and K. Maruyama, Effect of Precipitates on Long-Term Creep Deformation Properties of P92 and P122 Type Advanced Ferritic Steels for USC Power Plants, Mater. Sci. Eng. A, 2009, 510–511, p 162–168CrossRef
21.
Zurück zum Zitat M. Yamazaki, T. Watanabe, H. Hongo, and M. Tabuchi, Creep Rupture Properties of Welded Joints of Heat Resistant Steels, J. Power Energy Syst., 2008, 2(4), p 1140–1149CrossRef M. Yamazaki, T. Watanabe, H. Hongo, and M. Tabuchi, Creep Rupture Properties of Welded Joints of Heat Resistant Steels, J. Power Energy Syst., 2008, 2(4), p 1140–1149CrossRef
22.
Zurück zum Zitat Y. Hasegawa, M. Ohgami, and Y. Okamura, Advanced Heat Resistant Steels for Power Generation, R. Viswanathan and J. Nutting, Ed., The University Press, Cambridge, 1999, Y. Hasegawa, M. Ohgami, and Y. Okamura, Advanced Heat Resistant Steels for Power Generation, R. Viswanathan and J. Nutting, Ed., The University Press, Cambridge, 1999,
23.
Zurück zum Zitat N. Bagshaw, C. Punshon, J. Rothwell, Development of Welding P92 Pipes Using the Reduced Pressure Electron Beam Welding Process for a Study of Creep Performance, in Proceedings of the ASME Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries, March 25–27, 2014, ETAM2014-1010 N. Bagshaw, C. Punshon, J. Rothwell, Development of Welding P92 Pipes Using the Reduced Pressure Electron Beam Welding Process for a Study of Creep Performance, in Proceedings of the ASME Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries, March 25–27, 2014, ETAM2014-1010
24.
Zurück zum Zitat L. Zhao, H. Jing, L. Xu, J. An, and G. Xiao, Numerical Investigation of Factors Affecting Creep Damage Accumulation in ASME P92 Steel Welded Joint, Mater. Des., 2012, 34, p 566–575CrossRef L. Zhao, H. Jing, L. Xu, J. An, and G. Xiao, Numerical Investigation of Factors Affecting Creep Damage Accumulation in ASME P92 Steel Welded Joint, Mater. Des., 2012, 34, p 566–575CrossRef
25.
Zurück zum Zitat T. Sakthivel, S. Panneer Selvi, and K. Laha, An Assessment of Creep Deformation and Rupture Behaviour of 9Cr–1.8W–0.5Mo–VNb (ASME Grade 92) Steel, Mater. Sci. Eng. A, 2015, 640, p 61–71CrossRef T. Sakthivel, S. Panneer Selvi, and K. Laha, An Assessment of Creep Deformation and Rupture Behaviour of 9Cr–1.8W–0.5Mo–VNb (ASME Grade 92) Steel, Mater. Sci. Eng. A, 2015, 640, p 61–71CrossRef
26.
Zurück zum Zitat L. Esposito, Type IV Creep Cracking of Welded Joints: Numerical Study of the Grain Size Effect in HAZ, Procedia Struct. Integr., 2016, 2, p 919–926CrossRef L. Esposito, Type IV Creep Cracking of Welded Joints: Numerical Study of the Grain Size Effect in HAZ, Procedia Struct. Integr., 2016, 2, p 919–926CrossRef
27.
Zurück zum Zitat B.A. Shassere, Y. Yamamoto, and S. Suresh Babu, Toward Improving the Type IV Cracking Resistance in Cr-Mo Steel Weld Through Thermo-Mechanical processing, Metall. Mater. Trans. A, 2016, 47, p 2188–2200CrossRef B.A. Shassere, Y. Yamamoto, and S. Suresh Babu, Toward Improving the Type IV Cracking Resistance in Cr-Mo Steel Weld Through Thermo-Mechanical processing, Metall. Mater. Trans. A, 2016, 47, p 2188–2200CrossRef
28.
Zurück zum Zitat P. Mohyla, Z. Kubon, R. Cep, and I. Samardzic, Evaluation of Creep Properties of Steel P92 and Its Weld Joint, Metalurgija, 2014, 53(2), p 175–178 P. Mohyla, Z. Kubon, R. Cep, and I. Samardzic, Evaluation of Creep Properties of Steel P92 and Its Weld Joint, Metalurgija, 2014, 53(2), p 175–178
29.
Zurück zum Zitat P.J. Ennis, A. Zielinska-Lipiec, and A. Czyrska-Filemonowicz, Influence of Heat Treatments on Microstructural Parameters and Mechanical Properties of P92 Steel, Mater. Sci. Technol., 2000, 16, p 1226–1232CrossRef P.J. Ennis, A. Zielinska-Lipiec, and A. Czyrska-Filemonowicz, Influence of Heat Treatments on Microstructural Parameters and Mechanical Properties of P92 Steel, Mater. Sci. Technol., 2000, 16, p 1226–1232CrossRef
30.
Zurück zum Zitat Y. Li, H. Hongo, M. Tabuchi, Y. Takahashi, and Y. Monma, Evaluation of Creep Damage in Heat Affected Zone of Thick Welded Joint for Mod. 9Cr-1Mo Steel, Int. J. Press. Vessels Pip., 2009, 86, p 585–592CrossRef Y. Li, H. Hongo, M. Tabuchi, Y. Takahashi, and Y. Monma, Evaluation of Creep Damage in Heat Affected Zone of Thick Welded Joint for Mod. 9Cr-1Mo Steel, Int. J. Press. Vessels Pip., 2009, 86, p 585–592CrossRef
31.
Zurück zum Zitat T. Watanabe, M. Tabuchi, M. Yamazaki, H. Hongo, and T. Tanabe, Creep Damage Evaluation of 9Cr–1Mo–V–Nb Steel Welded Joints Showing Type IV Fracture, Int. J. Press. Vessels Pip., 2006, 83, p 63–71CrossRef T. Watanabe, M. Tabuchi, M. Yamazaki, H. Hongo, and T. Tanabe, Creep Damage Evaluation of 9Cr–1Mo–V–Nb Steel Welded Joints Showing Type IV Fracture, Int. J. Press. Vessels Pip., 2006, 83, p 63–71CrossRef
32.
Zurück zum Zitat S.K. Albert, M. Tabuchi, H. Hongo, T. Watanabe, K. Kubo, and M. Matsui, Effect of Welding Process and Groove Angle on Type IV Cracking Behaviour of Weld Joints of a Ferritic Steel, Sci. Technol. Weld. Join., 2005, 10, p 149–157CrossRef S.K. Albert, M. Tabuchi, H. Hongo, T. Watanabe, K. Kubo, and M. Matsui, Effect of Welding Process and Groove Angle on Type IV Cracking Behaviour of Weld Joints of a Ferritic Steel, Sci. Technol. Weld. Join., 2005, 10, p 149–157CrossRef
33.
Zurück zum Zitat J.A. Francis, W. Mazur, and H. Bhadeshia, Review Type IV Cracking in Ferritic Power Plant Steels, Mater. Sci. Technol., 2006, 22, p 1387–1395CrossRef J.A. Francis, W. Mazur, and H. Bhadeshia, Review Type IV Cracking in Ferritic Power Plant Steels, Mater. Sci. Technol., 2006, 22, p 1387–1395CrossRef
34.
Zurück zum Zitat D.J. Smith, N.S. Walker, and S.T. Kimmins, Type IV Creep Cavity Accumulation and Failure in Steel Welds, Int. J. Press. Vessels Pip., 2003, 80, p 617–627CrossRef D.J. Smith, N.S. Walker, and S.T. Kimmins, Type IV Creep Cavity Accumulation and Failure in Steel Welds, Int. J. Press. Vessels Pip., 2003, 80, p 617–627CrossRef
36.
Zurück zum Zitat RCC MR Design code, Section 1, Sub section Z, 2002. French Society for Design and Construction Rules for Nuclear Island components. RCC MR Design code, Section 1, Sub section Z, 2002. French Society for Design and Construction Rules for Nuclear Island components.
Metadaten
Titel
Creep Deformation and Rupture Behavior of P92 Steel Weld Joint Fabricated by NG-TIG Welding Process
verfasst von
T. Sakthivel
G. Sasikala
Manmath Kumar Dash
P. Syamala Rao
Publikationsdatum
24.06.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04157-1

Weitere Artikel der Ausgabe 7/2019

Journal of Materials Engineering and Performance 7/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.