Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2019

02.07.2019

Effect of Cobalt Content on Thermal, Mechanical, and Microstructural Properties of Al0.4FeCrNiCox (x = 0, 0.25, 0.5, 1.0 mol) High-Entropy Alloys

verfasst von: Saurav Kumar, Amar Patnaik, Ajaya Kumar Pradhan, Vinod Kumar

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Al0.4FeCrNiCox (x = 0, 0.25, 0.5, 1.0 mol) high-entropy alloys are developed by arc melting route to investigate the effect of cobalt content on thermal, mechanical, and microstructural properties. The phase, microstructure, and chemical composition are analyzed using x-ray diffraction, transmission electron microscope, and scanning electron microscope with attached energy-dispersive x-ray spectrometer. The obtained results have shown that the Al0.4FeCrNiCox (x = 0-0.5 mol) high-entropy alloys form a simple FCC + BCC-type solid solution and Al0.4FeCrNiCox=1 HEA forms a single-phase FCC structure. The compressive yield strength, microhardness, and thermal conductivity are observed to decrease from 965.22 to 233.37 MPa, 253.6 to 155.6 HV, and from 4.87 to 2.674 W/mK, respectively, whereas the electrical resistivity is observed to increase from 150.30 to 273.74 µΩ-cm with the addition of cobalt from x = 0-1 mol. Differential scanning calorimetry analysis has indicated that the Al0.4FeCrNiCox (x = 0, 0.25, 0.5, 1.0 mol) high-entropy alloys are thermally stable up to 1000 °C.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303CrossRef J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303CrossRef
2.
Zurück zum Zitat J.W. Yeh, Physical Metallurgy of High-Entropy Alloys, JOM, 2015, 67(10), p 2254–2261CrossRef J.W. Yeh, Physical Metallurgy of High-Entropy Alloys, JOM, 2015, 67(10), p 2254–2261CrossRef
3.
Zurück zum Zitat B.S. Murty, J.W. Yeh, and S. Ranganathan, High-Entropy Alloys, Butterworth-Heinemann, London, 2014, ISBN: 978-0-12-800251-3, pp. 1–204. B.S. Murty, J.W. Yeh, and S. Ranganathan, High-Entropy Alloys, Butterworth-Heinemann, London, 2014, ISBN: 978-0-12-800251-3, pp. 1–204.
4.
Zurück zum Zitat D. Kumar, O. Maulik, S. Kumar, Y.V.S.S. Prasad, and V. Kumar, Phase and Thermal Study of Equiatomic AlCuCrFeMnW High Entropy Alloy Processed via Spark Plasma Sintering, Mater. Chem. Phys., 2018, 210, p 71–77CrossRef D. Kumar, O. Maulik, S. Kumar, Y.V.S.S. Prasad, and V. Kumar, Phase and Thermal Study of Equiatomic AlCuCrFeMnW High Entropy Alloy Processed via Spark Plasma Sintering, Mater. Chem. Phys., 2018, 210, p 71–77CrossRef
5.
Zurück zum Zitat T.M. Butler and M.L. Weaver, Investigation of the Phase Stabilities in AlNiCoCrFe High Entropy Alloys, J. Alloys Compd., 2017, 691, p 119–129CrossRef T.M. Butler and M.L. Weaver, Investigation of the Phase Stabilities in AlNiCoCrFe High Entropy Alloys, J. Alloys Compd., 2017, 691, p 119–129CrossRef
6.
Zurück zum Zitat A. Munitz, S. Salhov, S. Hayun, and N. Frage, Heat Treatment Impacts the Micro-Structure and Mechanical Properties of AlCoCrFeNi High Entropy Alloy, J. Alloys Compd., 2016, 683, p 221–230CrossRef A. Munitz, S. Salhov, S. Hayun, and N. Frage, Heat Treatment Impacts the Micro-Structure and Mechanical Properties of AlCoCrFeNi High Entropy Alloy, J. Alloys Compd., 2016, 683, p 221–230CrossRef
7.
Zurück zum Zitat T.T. Shun and Y.C. Du, Microstructure and Tensile Behaviors of FCC Al0.3CoCrFeNi High Entropy Alloy, J. Alloys Compd., 2009, 479(1-2), p 157–160CrossRef T.T. Shun and Y.C. Du, Microstructure and Tensile Behaviors of FCC Al0.3CoCrFeNi High Entropy Alloy, J. Alloys Compd., 2009, 479(1-2), p 157–160CrossRef
8.
Zurück zum Zitat Y. Dong and Y. Lu, Effects of Tungsten Addition on the Microstructure and Mechanical Properties of Near-Eutectic AlCoCrFeNi2 High-Entropy Alloy, J. Mater. Eng. Perform., 2018, 27(1), p 109–115CrossRef Y. Dong and Y. Lu, Effects of Tungsten Addition on the Microstructure and Mechanical Properties of Near-Eutectic AlCoCrFeNi2 High-Entropy Alloy, J. Mater. Eng. Perform., 2018, 27(1), p 109–115CrossRef
9.
Zurück zum Zitat X. Hu and D. Chen, Effect of Ceramic Rolling and Annealing on Mechanical Properties of AlCoCrFeNi2.1 Eutectic High-Entropy Alloys, J. Mater. Eng. Perform., 2018, 27(7), p 3566–3573CrossRef X. Hu and D. Chen, Effect of Ceramic Rolling and Annealing on Mechanical Properties of AlCoCrFeNi2.1 Eutectic High-Entropy Alloys, J. Mater. Eng. Perform., 2018, 27(7), p 3566–3573CrossRef
10.
Zurück zum Zitat Z.M. Jiao, S.G. Ma, G.Z. Yuan, Z.H. Wang, H.J. Yang, and J.W. Qiao, Plastic Deformation of Al0.3CoCrFeNi and AlCoCrFeNi High-Entropy Alloys Under Nanoindentation, J. Mater. Eng. Perform., 2015, 24(8), p 3077–3083CrossRef Z.M. Jiao, S.G. Ma, G.Z. Yuan, Z.H. Wang, H.J. Yang, and J.W. Qiao, Plastic Deformation of Al0.3CoCrFeNi and AlCoCrFeNi High-Entropy Alloys Under Nanoindentation, J. Mater. Eng. Perform., 2015, 24(8), p 3077–3083CrossRef
11.
Zurück zum Zitat L. Tian, Z.M. Jiao, G.Z. Yuan, S.G. Ma, Z.H. Wang, H.J. Yang, Y. Zhang, and J.W. Qiao, Effect of Strain Rate on Deformation Behavior of AlCoCrFeNi High-Entropy Alloy by Nanoindentation, J. Mater. Eng. Perform., 2016, 25(6), p 2255–2260CrossRef L. Tian, Z.M. Jiao, G.Z. Yuan, S.G. Ma, Z.H. Wang, H.J. Yang, Y. Zhang, and J.W. Qiao, Effect of Strain Rate on Deformation Behavior of AlCoCrFeNi High-Entropy Alloy by Nanoindentation, J. Mater. Eng. Perform., 2016, 25(6), p 2255–2260CrossRef
12.
Zurück zum Zitat R. Wang, K. Zhang, C. Davies, and X. Wu, Evolution of Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Prepared by Direct Laser Fabrication, J. Alloys Compd., 2017, 694, p 971–981CrossRef R. Wang, K. Zhang, C. Davies, and X. Wu, Evolution of Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Prepared by Direct Laser Fabrication, J. Alloys Compd., 2017, 694, p 971–981CrossRef
13.
Zurück zum Zitat C.M. Lin and H.L. Tsai, Evolution of Microstructure, Hardness, and Corrosion Properties of High-Entropy Al0.5CoCrFeNi Alloy, Intermetallics, 2011, 19(3), p 288–294CrossRef C.M. Lin and H.L. Tsai, Evolution of Microstructure, Hardness, and Corrosion Properties of High-Entropy Al0.5CoCrFeNi Alloy, Intermetallics, 2011, 19(3), p 288–294CrossRef
14.
Zurück zum Zitat D. Kumar, O. Maulik, V.K. Sharma, Y.V.S.S. Prasad, and V. Kumar, Understanding the Effect of Tungsten on Corrosion Behavior of AlCuCrFeMnWx High-Entropy Alloys in 3.5 wt% NaCl Solution, J. Mater. Eng. Perform., 2018, 27(9), p 4481–4488CrossRef D. Kumar, O. Maulik, V.K. Sharma, Y.V.S.S. Prasad, and V. Kumar, Understanding the Effect of Tungsten on Corrosion Behavior of AlCuCrFeMnWx High-Entropy Alloys in 3.5 wt% NaCl Solution, J. Mater. Eng. Perform., 2018, 27(9), p 4481–4488CrossRef
15.
Zurück zum Zitat T.M. Butler and M.L. Weaver, Oxidation Behavior of Arc Melted AlCoCrFeNi Multi-Component High-Entropy Alloys, J. Alloys Compd., 2016, 674, p 229–244CrossRef T.M. Butler and M.L. Weaver, Oxidation Behavior of Arc Melted AlCoCrFeNi Multi-Component High-Entropy Alloys, J. Alloys Compd., 2016, 674, p 229–244CrossRef
16.
Zurück zum Zitat Y.X. Liu, C.Q. Cheng, J.L. Shang, R. Wang, P. Li, and J. Zhao, Oxidation Behavior of High-Entropy Alloys AlxCoCrFeNi (x = 0.15, 0.4) in Supercritical Water and Comparison, Trans. Nonferrous Met. Soc. China., 2015, 25(4), p 1341–1351CrossRef Y.X. Liu, C.Q. Cheng, J.L. Shang, R. Wang, P. Li, and J. Zhao, Oxidation Behavior of High-Entropy Alloys AlxCoCrFeNi (x = 0.15, 0.4) in Supercritical Water and Comparison, Trans. Nonferrous Met. Soc. China., 2015, 25(4), p 1341–1351CrossRef
17.
Zurück zum Zitat N.K. Prasad and V. Kumar, Structure–Magnetic Properties Correlation in Mechanically Alloyed Nanocrystalline Fe–Co–Ni–(Mg–Si)x Alloy Powders, J. Mater. Sci.: Mater. Electron., 2016, 27(10), p 10136–10146 N.K. Prasad and V. Kumar, Structure–Magnetic Properties Correlation in Mechanically Alloyed Nanocrystalline Fe–Co–Ni–(Mg–Si)x Alloy Powders, J. Mater. Sci.: Mater. Electron., 2016, 27(10), p 10136–10146
18.
Zurück zum Zitat Y. Dong, L. Jiang, Z. Tang, Y. Lu, and T. Li, Effect of Electromagnetic Field on Microstructure and Properties of Bulk AlCrFeNiMo0.2 High-Entropy Alloy, J. Mater. Eng. Perform., 2015, 24(11), p 4475–4481CrossRef Y. Dong, L. Jiang, Z. Tang, Y. Lu, and T. Li, Effect of Electromagnetic Field on Microstructure and Properties of Bulk AlCrFeNiMo0.2 High-Entropy Alloy, J. Mater. Eng. Perform., 2015, 24(11), p 4475–4481CrossRef
19.
Zurück zum Zitat Y. Wang, Y. Yang, H. Yang, M. Zhang, and J. Qiao, Effect of Nitriding on the Tribological Properties of Al1.3CoCuFeNi2 High-Entropy Alloy, J. Alloys Compd., 2017, 725, p 365–372CrossRef Y. Wang, Y. Yang, H. Yang, M. Zhang, and J. Qiao, Effect of Nitriding on the Tribological Properties of Al1.3CoCuFeNi2 High-Entropy Alloy, J. Alloys Compd., 2017, 725, p 365–372CrossRef
20.
Zurück zum Zitat Y. Wang, Y. Yang, H. Yang, M. Zhang, and S. Ma, Microstructure and Wear Properties of Nitrided AlCoCrFeNi High-Entropy Alloy, Mater. Chem. Phys., 2018, 210, p 233–239CrossRef Y. Wang, Y. Yang, H. Yang, M. Zhang, and S. Ma, Microstructure and Wear Properties of Nitrided AlCoCrFeNi High-Entropy Alloy, Mater. Chem. Phys., 2018, 210, p 233–239CrossRef
21.
Zurück zum Zitat X. Ji, S.H. Alavi, S.P. Harimkar, and Y. Zhang, Sliding Wear of Spark Plasma Sintered CrFeCoNiCu High-Entropy Alloy Coatings: Effect of Aluminum Addition, J. Mater. Eng. Perform., 2018, 27(11), p 5815–5822CrossRef X. Ji, S.H. Alavi, S.P. Harimkar, and Y. Zhang, Sliding Wear of Spark Plasma Sintered CrFeCoNiCu High-Entropy Alloy Coatings: Effect of Aluminum Addition, J. Mater. Eng. Perform., 2018, 27(11), p 5815–5822CrossRef
22.
Zurück zum Zitat K. Lentzaris, A. Poulia, E. Georgatis, A.G. Lekatou, and A.E. Karantzalis, Analysis of Microstructure and Sliding Wear Behavior of Co1.5CrFeNi1.5Ti0.5 High-Entropy Alloy, J. Mater. Eng. Perform., 2018, 27(10), p 5177–5186CrossRef K. Lentzaris, A. Poulia, E. Georgatis, A.G. Lekatou, and A.E. Karantzalis, Analysis of Microstructure and Sliding Wear Behavior of Co1.5CrFeNi1.5Ti0.5 High-Entropy Alloy, J. Mater. Eng. Perform., 2018, 27(10), p 5177–5186CrossRef
23.
Zurück zum Zitat M.X. Ren, B.S. Li, and H.Z. Fu, Formation Condition of Solid Solution Type High-Entropy Alloy, Trans. Nonferrous Met. Soc. China, 2013, 23(4), p 991–995CrossRef M.X. Ren, B.S. Li, and H.Z. Fu, Formation Condition of Solid Solution Type High-Entropy Alloy, Trans. Nonferrous Met. Soc. China, 2013, 23(4), p 991–995CrossRef
24.
Zurück zum Zitat Y. Zhang and W.J. Peng, Microstructural Control and Properties Optimization of High-Entropy Alloys, Procedia Eng., 2012, 27, p 1169–1178CrossRef Y. Zhang and W.J. Peng, Microstructural Control and Properties Optimization of High-Entropy Alloys, Procedia Eng., 2012, 27, p 1169–1178CrossRef
25.
Zurück zum Zitat S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of Valence Electron Concentration on Stability of fcc or bcc Phase in High Entropy Alloys, J. Appl. Phys., 2011, 109(10), p 103505CrossRef S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of Valence Electron Concentration on Stability of fcc or bcc Phase in High Entropy Alloys, J. Appl. Phys., 2011, 109(10), p 103505CrossRef
26.
Zurück zum Zitat J.W. Qiao, S.G. Ma, E.W. Huang, C.P. Chuang, P.K. Liaw, and Y. Zhang, Microstructural Characteristics and Mechanical Behaviors of AlCoCrFeNi High-Entropy Alloys at Ambient and Cryogenic Temperature, Mater. Sci. Forum, 2011, 688, p 419–425CrossRef J.W. Qiao, S.G. Ma, E.W. Huang, C.P. Chuang, P.K. Liaw, and Y. Zhang, Microstructural Characteristics and Mechanical Behaviors of AlCoCrFeNi High-Entropy Alloys at Ambient and Cryogenic Temperature, Mater. Sci. Forum, 2011, 688, p 419–425CrossRef
27.
Zurück zum Zitat J. Joseph, T. Jarvis, X. Wu, N. Stanford, P. Hodgson, and D.M. Fabijanic, Comparative Study of the Microstructures and Mechanical Properties of Direct Laser Fabricated and Arc-Melted AlxCoCrFeNi High Entropy Alloys, Mater. Sci. Eng. A, 2015, 633, p 184–193CrossRef J. Joseph, T. Jarvis, X. Wu, N. Stanford, P. Hodgson, and D.M. Fabijanic, Comparative Study of the Microstructures and Mechanical Properties of Direct Laser Fabricated and Arc-Melted AlxCoCrFeNi High Entropy Alloys, Mater. Sci. Eng. A, 2015, 633, p 184–193CrossRef
28.
Zurück zum Zitat S. Niu, H. Kou, T. Guo, Y. Zhang, J. Wang, and J. Li, Strengthening of Nano Precipitations in an Annealed Al0.5CoCrFeNi High Entropy Alloy, Mater. Sci. Eng. A, 2016, 671, p 82–86CrossRef S. Niu, H. Kou, T. Guo, Y. Zhang, J. Wang, and J. Li, Strengthening of Nano Precipitations in an Annealed Al0.5CoCrFeNi High Entropy Alloy, Mater. Sci. Eng. A, 2016, 671, p 82–86CrossRef
29.
Zurück zum Zitat Z. Wang, M.C. Gao, S.G. Ma, H.J. Yang, Z.H. Wang, M.Z. Moroz, and J.W. Qiao, Effect of Cold Rolling on the Microstructure and Mechanical Properties of Al0.25CoCrFe1.25 Ni1.25 High-entropy alloy, Mater. Sci. Eng. A., 2015, 645, p 163–169CrossRef Z. Wang, M.C. Gao, S.G. Ma, H.J. Yang, Z.H. Wang, M.Z. Moroz, and J.W. Qiao, Effect of Cold Rolling on the Microstructure and Mechanical Properties of Al0.25CoCrFe1.25 Ni1.25 High-entropy alloy, Mater. Sci. Eng. A., 2015, 645, p 163–169CrossRef
30.
Zurück zum Zitat Y.F. Kao, T.J. Chen, S.K. Chen, and J.W. Yeh, Microstructure and Mechanical Property of as-Cast, -Homogenized, and -Deformed AlxCoCrFeNi (0 ≤ x≤2) High-Entropy Alloys, J. Alloys Compd., 2009, 488(1), p 57–64CrossRef Y.F. Kao, T.J. Chen, S.K. Chen, and J.W. Yeh, Microstructure and Mechanical Property of as-Cast, -Homogenized, and -Deformed AlxCoCrFeNi (0 ≤ x≤2) High-Entropy Alloys, J. Alloys Compd., 2009, 488(1), p 57–64CrossRef
31.
Zurück zum Zitat I.S. Wani, T. Bhattacharjee, S. Sheikh, P.P. Bhattacharjee, S. Guo, and N. Tsuji, Tailoring Nanostructures and Mechanical Properties of AlCoCrFeNi2.1 Eutectic High Entropy Alloy Using Thermo-Mechanical Processing, Mater. Sci. Eng. A, 2016, 675, p 99–109CrossRef I.S. Wani, T. Bhattacharjee, S. Sheikh, P.P. Bhattacharjee, S. Guo, and N. Tsuji, Tailoring Nanostructures and Mechanical Properties of AlCoCrFeNi2.1 Eutectic High Entropy Alloy Using Thermo-Mechanical Processing, Mater. Sci. Eng. A, 2016, 675, p 99–109CrossRef
32.
Zurück zum Zitat W. Chen, Z. Fu, S. Fang, H. Xiao, and D. Zhu, Alloying Behavior, Microstructure and Mechanical Properties in a FeNiCrCo0.3Al0.7 High Entropy Alloy, Mater. Des., 2013, 51, p 854–860CrossRef W. Chen, Z. Fu, S. Fang, H. Xiao, and D. Zhu, Alloying Behavior, Microstructure and Mechanical Properties in a FeNiCrCo0.3Al0.7 High Entropy Alloy, Mater. Des., 2013, 51, p 854–860CrossRef
33.
Zurück zum Zitat S. Fang, W. Chen, and Z. Fu, Microstructure and Mechanical Properties of Twinned Al0.5CrFeNiCo0.3C0.2 High Entropy Alloy Processed by Mechanical Alloying and Spark Plasma Sintering, Mater. Des., 2014, 54, p 973–979CrossRef S. Fang, W. Chen, and Z. Fu, Microstructure and Mechanical Properties of Twinned Al0.5CrFeNiCo0.3C0.2 High Entropy Alloy Processed by Mechanical Alloying and Spark Plasma Sintering, Mater. Des., 2014, 54, p 973–979CrossRef
34.
Zurück zum Zitat Y. Zhao, H. Cui, M. Wang, Y. Zhao, X. Zhang, and C. Wang, The Microstructures and Properties Changes Induced by Al: Co Ratios of the AlxCrCo2−xFeNi High Entropy Alloys, Mater. Sci. Eng. A, 2018, 733, p 153–163CrossRef Y. Zhao, H. Cui, M. Wang, Y. Zhao, X. Zhang, and C. Wang, The Microstructures and Properties Changes Induced by Al: Co Ratios of the AlxCrCo2−xFeNi High Entropy Alloys, Mater. Sci. Eng. A, 2018, 733, p 153–163CrossRef
35.
Zurück zum Zitat G. Qin, W. Xue, C. Fan, R. Chen, L. Wang, Y. Su, H. Ding, and J. Guo, Effect of Co Content on Phase Formation and Mechanical Properties of (AlCoCrFeNi)100−xCox High-Entropy Alloys, Mater. Sci. Eng. A, 2018, 710, p 200–205CrossRef G. Qin, W. Xue, C. Fan, R. Chen, L. Wang, Y. Su, H. Ding, and J. Guo, Effect of Co Content on Phase Formation and Mechanical Properties of (AlCoCrFeNi)100−xCox High-Entropy Alloys, Mater. Sci. Eng. A, 2018, 710, p 200–205CrossRef
36.
Zurück zum Zitat K. Jasiewicz, J. Cieslak, S. Kaprzyk, and J. Tobola, Relative Crystal Stability of AlxFeNiCrCo High Entropy Alloys from XRD Analysis and Formation Energy Calculation, J. Alloys Compd., 2015, 648, p 307–312CrossRef K. Jasiewicz, J. Cieslak, S. Kaprzyk, and J. Tobola, Relative Crystal Stability of AlxFeNiCrCo High Entropy Alloys from XRD Analysis and Formation Energy Calculation, J. Alloys Compd., 2015, 648, p 307–312CrossRef
37.
Zurück zum Zitat Y. Dong, X. Gao, Y. Lu, T. Wang, and T. Li, A Multi-Component AlCrFe2Ni2 Alloy with Excellent Mechanical Properties, Mater. Lett., 2016, 169, p 62–64CrossRef Y. Dong, X. Gao, Y. Lu, T. Wang, and T. Li, A Multi-Component AlCrFe2Ni2 Alloy with Excellent Mechanical Properties, Mater. Lett., 2016, 169, p 62–64CrossRef
38.
Zurück zum Zitat J. Wang, T. Guo, J. Li, W. Jia, and H. Kou, Microstructure and Mechanical Properties of Non-Equilibrium Solidified CoCrFeNi High Entropy Alloy, Mater. Chem. Phys., 2018, 210, p 192–196CrossRef J. Wang, T. Guo, J. Li, W. Jia, and H. Kou, Microstructure and Mechanical Properties of Non-Equilibrium Solidified CoCrFeNi High Entropy Alloy, Mater. Chem. Phys., 2018, 210, p 192–196CrossRef
39.
Zurück zum Zitat H.P. Chou, Y.S. Chang, S.K. Chen, and J.W. Yeh, Microstructure, Thermophysical and Electrical Properties in AlxCoCrFeNi (0 ≤ x ≤ 2) High-Entropy Alloys, Mater. Sci. Eng. B, 2009, 163(3), p 184–189CrossRef H.P. Chou, Y.S. Chang, S.K. Chen, and J.W. Yeh, Microstructure, Thermophysical and Electrical Properties in AlxCoCrFeNi (0 ≤ x ≤ 2) High-Entropy Alloys, Mater. Sci. Eng. B, 2009, 163(3), p 184–189CrossRef
40.
Zurück zum Zitat S. Uporov, V. Bykov, S. Pryanichnikov, A. Shubin, and N. Uporova, Effect of Synthesis Route on Structure and Properties of AlCoCrFeNi High-Entropy Alloy, Intermetallics, 2017, 83, p 1–8CrossRef S. Uporov, V. Bykov, S. Pryanichnikov, A. Shubin, and N. Uporova, Effect of Synthesis Route on Structure and Properties of AlCoCrFeNi High-Entropy Alloy, Intermetallics, 2017, 83, p 1–8CrossRef
41.
Zurück zum Zitat B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377, p 213–218CrossRef B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377, p 213–218CrossRef
42.
Zurück zum Zitat S. Guo and C.T. Liu, Phase Stability in High Entropy Alloys Formation of Solid-Solution Phase or Amorphous Phase, Prog. Nat. Sci. Mater. Int., 2011, 21(6), p 433–446CrossRef S. Guo and C.T. Liu, Phase Stability in High Entropy Alloys Formation of Solid-Solution Phase or Amorphous Phase, Prog. Nat. Sci. Mater. Int., 2011, 21(6), p 433–446CrossRef
43.
Zurück zum Zitat Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures, and Properties of High-Entropy Alloys, Prog. Mater Sci., 2014, 61, p 1–93CrossRef Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures, and Properties of High-Entropy Alloys, Prog. Mater Sci., 2014, 61, p 1–93CrossRef
44.
Zurück zum Zitat S. Guo, Phase Selection Rules for Cast High Entropy Alloys: An Overview, Mater. Sci. Technol., 2015, 31(10), p 1223–1230CrossRef S. Guo, Phase Selection Rules for Cast High Entropy Alloys: An Overview, Mater. Sci. Technol., 2015, 31(10), p 1223–1230CrossRef
45.
Zurück zum Zitat W. Martienssen and H. Warlimont, Handbook of Condensed Matter and Materials Data, Springer, Berlin, 2005, ISBN 3-540-44376-2CrossRef W. Martienssen and H. Warlimont, Handbook of Condensed Matter and Materials Data, Springer, Berlin, 2005, ISBN 3-540-44376-2CrossRef
46.
Zurück zum Zitat Y. Dong, Y. Lu, L. Jiang, T. Wang, and T. Li, Effects of Electro-Negativity on the Stability of Topologically Close Packed Phase in High Entropy Alloys, Intermetallics, 2014, 52, p 105–109CrossRef Y. Dong, Y. Lu, L. Jiang, T. Wang, and T. Li, Effects of Electro-Negativity on the Stability of Topologically Close Packed Phase in High Entropy Alloys, Intermetallics, 2014, 52, p 105–109CrossRef
Metadaten
Titel
Effect of Cobalt Content on Thermal, Mechanical, and Microstructural Properties of Al0.4FeCrNiCox (x = 0, 0.25, 0.5, 1.0 mol) High-Entropy Alloys
verfasst von
Saurav Kumar
Amar Patnaik
Ajaya Kumar Pradhan
Vinod Kumar
Publikationsdatum
02.07.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04162-4

Weitere Artikel der Ausgabe 7/2019

Journal of Materials Engineering and Performance 7/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.