Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2020

06.07.2020

Cruciform Specimen Machining Using EDM and a New Design Verification for Biaxial Testing

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cruciform flat specimen is mostly used to investigate experimentally the in-plane biaxial mechanical behavior of sheet metals. In this study, a modified cruciform specimen design is proposed and validated against the performance of current standard design. The existing standard cruciform specimen prepared through laser cutting for sheet metal can accurately provide biaxial stress–strain curve through biaxial tensile test by ensuring superior homogeneous stress and strain field in gauge section. However, preparation of such specimen using laser cut is cumbersome, expensive and prone to errors. The current standard cruciform specimen design features slotted arm of fixed length and width with specific gauge. Few other designs also feature reduced gauge section to localize failure. Both need high precision of laser cutting and machining to prepare specimens which can achieve biaxial stress–strain curve for more than 4% equivalent plastic strain level. The proposed specimen design features running slits in all four arms of specimen with uniform gauge section machined using electrical discharge machining (EDM) owing to higher accuracy and minimum heat-affected zone (HAZ). This technique also avoids machining effects with an understanding that proposed specimen design is to determine the yield behavior of material only. Also, specimen fabricated from as received sheets and without any thickness reduction in gauge area allows the user to keep full thickness in biaxial condition. The modified design qualifies the commonly accepted performance criteria for cruciform specimen, i.e., stress and strain distribution in the gauge section is found to be homogeneous and the biaxial stress–strain curve can be generated until 4% of equivalent plastic strain. The proposed specimen design is evaluated experimentally by conducting biaxial test at various stress ratios, and it is compared with alike experiments using standard specimen design. One automotive grade material, interstitial-Free high-strength (IFHS) steel sheet of thickness 0.70 mm is tested in this study to validate the specimen design.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F. Barlat, H. Aretz, J.W. Yoon, M.E. Karabin, J.C. Brem, and R.E. Dick, Linear Transfomation-Based Anisotropic Yield Functions, Int. J. Plast., 2005, 21(5), p 1009–1039CrossRef F. Barlat, H. Aretz, J.W. Yoon, M.E. Karabin, J.C. Brem, and R.E. Dick, Linear Transfomation-Based Anisotropic Yield Functions, Int. J. Plast., 2005, 21(5), p 1009–1039CrossRef
2.
Zurück zum Zitat T. Kuwabara, Advances in Experiments on Metal Sheets and Tubes in Support of Constitutive Modeling and Forming Simulations, Int. J. Plast., 2007, 23(3), p 385–419CrossRef T. Kuwabara, Advances in Experiments on Metal Sheets and Tubes in Support of Constitutive Modeling and Forming Simulations, Int. J. Plast., 2007, 23(3), p 385–419CrossRef
3.
Zurück zum Zitat C.C. Tasan, J.P. Hoefnagels, G. Quaak, and M.G. Geers, In-Plane Biaxial Loading of Sheet Metal Until Fracture, in Proceedings of the 2008 SEM XI International Congress and Exposition on Experimental and Applied Mechanics, Orlando, Florida, 2008 June 2, p 2–5 C.C. Tasan, J.P. Hoefnagels, G. Quaak, and M.G. Geers, In-Plane Biaxial Loading of Sheet Metal Until Fracture, in Proceedings of the 2008 SEM XI International Congress and Exposition on Experimental and Applied Mechanics, Orlando, Florida, 2008 June 2, p 2–5
4.
Zurück zum Zitat T. Kuwabara, S. Ikeda, and K. Kuroda, Measurement and Analysis of Differential Work Hardening in Cold-Rolled Steel Sheet Under Biaxial Tension, J. Mater. Process. Technol., 1998, 1(80), p 517–523CrossRef T. Kuwabara, S. Ikeda, and K. Kuroda, Measurement and Analysis of Differential Work Hardening in Cold-Rolled Steel Sheet Under Biaxial Tension, J. Mater. Process. Technol., 1998, 1(80), p 517–523CrossRef
5.
Zurück zum Zitat ISO 16842, Metallic Materials—Sheet and Strip—Biaxial Tensile Testing Method Using a Cruciform Test Piece, 2014 ISO 16842, Metallic Materials—Sheet and Strip—Biaxial Tensile Testing Method Using a Cruciform Test Piece, 2014
7.
Zurück zum Zitat L.F. Medellín and J.Á. De la Peña, Design of a Biaxial Test Module for Uniaxial Testing Machine, Mater. Today: Proc., 2017, 4(8), p 7911–7920 L.F. Medellín and J.Á. De la Peña, Design of a Biaxial Test Module for Uniaxial Testing Machine, Mater. Today: Proc., 2017, 4(8), p 7911–7920
8.
Zurück zum Zitat M. Brieu, J. Diani, and N. Bhatnagar, A New Biaxial Tension Test Fixture for Uniaxial Testing Machine, J. Test. Eval., 2007, 35(4), p 364–372 M. Brieu, J. Diani, and N. Bhatnagar, A New Biaxial Tension Test Fixture for Uniaxial Testing Machine, J. Test. Eval., 2007, 35(4), p 364–372
9.
Zurück zum Zitat A. Barroso, E. Correa, J. Freire, and F. París, A Device for Biaxial Testing in Uniaxial Machines. Design, Manufacturing and Experimental Results Using Cruciform Specimens of Composite Materials, Exp. Mech., 2018, 58(1), p 49–53CrossRef A. Barroso, E. Correa, J. Freire, and F. París, A Device for Biaxial Testing in Uniaxial Machines. Design, Manufacturing and Experimental Results Using Cruciform Specimens of Composite Materials, Exp. Mech., 2018, 58(1), p 49–53CrossRef
10.
Zurück zum Zitat L. Leotoing, D. Guines, S.Y. Zhang, and E. Ragneau, A Cruciform Shape to Study the Influence of Strain Paths on Forming Limit Curves, in Key Engineering Materials, vol. 554, p 41–46. Trans Tech Publications, 2013 L. Leotoing, D. Guines, S.Y. Zhang, and E. Ragneau, A Cruciform Shape to Study the Influence of Strain Paths on Forming Limit Curves, in Key Engineering Materials, vol. 554, p 41–46. Trans Tech Publications, 2013
11.
Zurück zum Zitat F. Abu-Farha, L.G. Hector, and M. Khraisheh, Cruciform-Shaped Specimens for Elevated Temperature Biaxial Testing of Lightweight Materials, JOM, 2009, 61(8), p 48–56CrossRef F. Abu-Farha, L.G. Hector, and M. Khraisheh, Cruciform-Shaped Specimens for Elevated Temperature Biaxial Testing of Lightweight Materials, JOM, 2009, 61(8), p 48–56CrossRef
12.
Zurück zum Zitat A. Hannon and P. Tiernan, A Review of Planar Biaxial Tensile Test Systems for Sheet Metal, J. Mater. Process. Technol., 2008, 198(1–3), p 1–3CrossRef A. Hannon and P. Tiernan, A Review of Planar Biaxial Tensile Test Systems for Sheet Metal, J. Mater. Process. Technol., 2008, 198(1–3), p 1–3CrossRef
13.
Zurück zum Zitat M. Härtel, S. Pfeiffer, S. Schmaltz, B. Söhngen, D. Kulawinski, K. Willner, S. Henkel, H. Biermann, and M.X. Wagner, On the Identification of an Effective Cross Section for a Cruciform Specimen, Strain, 2018, 54(1), p e12257CrossRef M. Härtel, S. Pfeiffer, S. Schmaltz, B. Söhngen, D. Kulawinski, K. Willner, S. Henkel, H. Biermann, and M.X. Wagner, On the Identification of an Effective Cross Section for a Cruciform Specimen, Strain, 2018, 54(1), p e12257CrossRef
14.
Zurück zum Zitat D. Kulawinski, K. Nagel, S. Henkel, P. Hübner, H. Fischer, M. Kuna, and H. Biermann, Characterization of Stress–Strain Behavior of a Cast TRIP Steel Under Different Biaxial Planar Load Ratios, Eng. Fract. Mech., 2011, 78(8), p 1684–1695CrossRef D. Kulawinski, K. Nagel, S. Henkel, P. Hübner, H. Fischer, M. Kuna, and H. Biermann, Characterization of Stress–Strain Behavior of a Cast TRIP Steel Under Different Biaxial Planar Load Ratios, Eng. Fract. Mech., 2011, 78(8), p 1684–1695CrossRef
15.
Zurück zum Zitat J. Granlund, Structural Steel Plasticity: Experimental Study and Theoretical Modelling (Doctoral dissertation, Luleå tekniska universitet), 1997 J. Granlund, Structural Steel Plasticity: Experimental Study and Theoretical Modelling (Doctoral dissertation, Luleå tekniska universitet), 1997
16.
Zurück zum Zitat J. Gozzi, Plastic Behaviour of Steel: Experimental Investigation and Modelling (Doctoral dissertation, Luleå tekniska universitet), 2004 J. Gozzi, Plastic Behaviour of Steel: Experimental Investigation and Modelling (Doctoral dissertation, Luleå tekniska universitet), 2004
17.
Zurück zum Zitat B. Zillmann, M.F.X. Wagner, S. Schmaltz, E. Schmidl, T. Lampke, K. Willner, and T. Halle, In-Plane Biaxial Compression and Tension Testing of Thin Sheet Materials, Int. J. Solids Struct., 2015, 66, p 111–120CrossRef B. Zillmann, M.F.X. Wagner, S. Schmaltz, E. Schmidl, T. Lampke, K. Willner, and T. Halle, In-Plane Biaxial Compression and Tension Testing of Thin Sheet Materials, Int. J. Solids Struct., 2015, 66, p 111–120CrossRef
18.
Zurück zum Zitat Y. Hanabusa, H. Takizawa, and T. Kuwabara, Numerical Verification of a Biaxial Tensile Test Method Using a Cruciform Specimen, J. Mater. Process. Technol., 2013, 213(6), p 961–970CrossRef Y. Hanabusa, H. Takizawa, and T. Kuwabara, Numerical Verification of a Biaxial Tensile Test Method Using a Cruciform Specimen, J. Mater. Process. Technol., 2013, 213(6), p 961–970CrossRef
19.
Zurück zum Zitat M. Geiger, W. Hußnätter, and M. Merklein, Specimen for a Novel Concept of the Biaxial Tension Test, J. Mater. Process. Technol., 2005, 167(2–3), p 177–183CrossRef M. Geiger, W. Hußnätter, and M. Merklein, Specimen for a Novel Concept of the Biaxial Tension Test, J. Mater. Process. Technol., 2005, 167(2–3), p 177–183CrossRef
20.
Zurück zum Zitat Y. Yu, M. Wan, X.D. Wu, and X.B. Zhou, Design of a Cruciform Biaxial Tensile Specimen for Limit Strain Analysis by FEM, J. Mater. Process. Technol., 2002, 123(1), p 67–70CrossRef Y. Yu, M. Wan, X.D. Wu, and X.B. Zhou, Design of a Cruciform Biaxial Tensile Specimen for Limit Strain Analysis by FEM, J. Mater. Process. Technol., 2002, 123(1), p 67–70CrossRef
21.
Zurück zum Zitat D. Lecompte, A. Smits, H. Sol, J. Vantomme, and D. Van Hemelrijck, Mixed Numerical–Experimental Technique for Orthotropic Parameter Identification Using Biaxial Tensile Tests on Cruciform Specimens, Int. J. Solids Struct., 2007, 44(5), p 1643–1656CrossRef D. Lecompte, A. Smits, H. Sol, J. Vantomme, and D. Van Hemelrijck, Mixed Numerical–Experimental Technique for Orthotropic Parameter Identification Using Biaxial Tensile Tests on Cruciform Specimens, Int. J. Solids Struct., 2007, 44(5), p 1643–1656CrossRef
22.
Zurück zum Zitat S. Schmaltz and K. Willner, Material Parameter Identification Utilizing Optical Full-Field Strain Measurement and Digital Image Correlation, J. Jpn. Soc. Exp. Mech., 2013, 13(Special_Issue), p s120–s125 S. Schmaltz and K. Willner, Material Parameter Identification Utilizing Optical Full-Field Strain Measurement and Digital Image Correlation, J. Jpn. Soc. Exp. Mech., 2013, 13(Special_Issue), p s120–s125
23.
Zurück zum Zitat S. Schmaltz and K. Willner, Comparison of Different Biaxial Tests for the Inverse Identification of Sheet Steel Material Parameters, Strain, 2014, 50(5), p 389–403CrossRef S. Schmaltz and K. Willner, Comparison of Different Biaxial Tests for the Inverse Identification of Sheet Steel Material Parameters, Strain, 2014, 50(5), p 389–403CrossRef
24.
Zurück zum Zitat M. Springmann and M. Kuna, Determination of Ductile Damage Parameters by Local Deformation Fields: Measurement and Simulation, Arch. Appl. Mech., 2006, 75(10–12), p 775CrossRef M. Springmann and M. Kuna, Determination of Ductile Damage Parameters by Local Deformation Fields: Measurement and Simulation, Arch. Appl. Mech., 2006, 75(10–12), p 775CrossRef
25.
Zurück zum Zitat N. Deng, T. Kuwabara, and Y.P. Korkolis, Cruciform Specimen Design and Verification for Constitutive Identification of Anisotropic Sheets, Exp. Mech., 2015, 55(6), p 1005–1022CrossRef N. Deng, T. Kuwabara, and Y.P. Korkolis, Cruciform Specimen Design and Verification for Constitutive Identification of Anisotropic Sheets, Exp. Mech., 2015, 55(6), p 1005–1022CrossRef
26.
Zurück zum Zitat L. Leotoing, D. Guines, I. Zidane, and E. Ragneau, Cruciform Shape Benefits for Experimental and Numerical Evaluation of Sheet Metal Formability, J. Mater. Process. Technol., 2013, 213(6), p 856–863CrossRef L. Leotoing, D. Guines, I. Zidane, and E. Ragneau, Cruciform Shape Benefits for Experimental and Numerical Evaluation of Sheet Metal Formability, J. Mater. Process. Technol., 2013, 213(6), p 856–863CrossRef
27.
Zurück zum Zitat D.E. Green, K.W. Neale, S.R. MacEwen, A. Makinde, and R. Perrin, Experimental Investigation of the Biaxial Behaviour of an Aluminum Sheet, Int. J. Plast, 2004, 20(8–9), p 1677–1706CrossRef D.E. Green, K.W. Neale, S.R. MacEwen, A. Makinde, and R. Perrin, Experimental Investigation of the Biaxial Behaviour of an Aluminum Sheet, Int. J. Plast, 2004, 20(8–9), p 1677–1706CrossRef
28.
Zurück zum Zitat S. Demmerle and J.P. Boehler, Optimal Design of Biaxial Tensile Cruciform Specimens, J. Mech. Phys. Solids, 1993, 41(1), p 143–181CrossRef S. Demmerle and J.P. Boehler, Optimal Design of Biaxial Tensile Cruciform Specimens, J. Mech. Phys. Solids, 1993, 41(1), p 143–181CrossRef
29.
Zurück zum Zitat C.L. Walters, The Effect of Machining the Gage Section on Biaxial Tension/Shear Plasticity Experiments of DP780 Sheet Steel, Exp. Mech., 2013, 53(9), p 1647–1659CrossRef C.L. Walters, The Effect of Machining the Gage Section on Biaxial Tension/Shear Plasticity Experiments of DP780 Sheet Steel, Exp. Mech., 2013, 53(9), p 1647–1659CrossRef
30.
Zurück zum Zitat R.E. Graham, Why a Laser Cutting System: A Comparison with More Conventional Cutting Systems. General Fabrication Department, US, Amada. R.E. Graham, Why a Laser Cutting System: A Comparison with More Conventional Cutting Systems. General Fabrication Department, US, Amada.
31.
Zurück zum Zitat R.K. Garg et al., Review of Research Work in Sinking EDM and WEDM on Metal Matrix Composite Materials, Int. J. Adv. Manuf. Technol., 2010, 50, p 611–624CrossRef R.K. Garg et al., Review of Research Work in Sinking EDM and WEDM on Metal Matrix Composite Materials, Int. J. Adv. Manuf. Technol., 2010, 50, p 611–624CrossRef
32.
Zurück zum Zitat 50 kN Servo Electric Bi-axial Test System Service Manual, BISS, ITW 50 kN Servo Electric Bi-axial Test System Service Manual, BISS, ITW
33.
Zurück zum Zitat T. Kuwabara, M. Kuroda, V. Tvergaard, and K. Nomura, Use of Abrupt Strain Path Change for Determining Subsequent Yield Surface. Experimental Study with Metal Sheets, Acta Mater., 2000, 48, p 2071–2079CrossRef T. Kuwabara, M. Kuroda, V. Tvergaard, and K. Nomura, Use of Abrupt Strain Path Change for Determining Subsequent Yield Surface. Experimental Study with Metal Sheets, Acta Mater., 2000, 48, p 2071–2079CrossRef
34.
Zurück zum Zitat T. Kuwabara, A. Van Bael, and E. Iizuka, Measurement and Analysis of Yield Locus and Work Hardening Characteristics of Steel Sheets with Different r Values, Acta Mater., 2002, 50, p 3717–3729CrossRef T. Kuwabara, A. Van Bael, and E. Iizuka, Measurement and Analysis of Yield Locus and Work Hardening Characteristics of Steel Sheets with Different r Values, Acta Mater., 2002, 50, p 3717–3729CrossRef
35.
Zurück zum Zitat GOM Testing Technical Documentation as of V8 SR1, Digital Image Correlation and Strain Computation Basics GOM Testing Technical Documentation as of V8 SR1, Digital Image Correlation and Strain Computation Basics
Metadaten
Titel
Cruciform Specimen Machining Using EDM and a New Design Verification for Biaxial Testing
Publikationsdatum
06.07.2020
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04921-8

Weitere Artikel der Ausgabe 7/2020

Journal of Materials Engineering and Performance 7/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.