Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 1/2015

01.02.2015

Crystallization Kinetics and Mechanism of CaO–Al2O3-Based Mold Flux for Casting High-Aluminum TRIP Steels

verfasst von: Cheng-Bin Shi, Myung-Duk Seo, Hui Wang, Jung-Wook Cho, Seon-Hyo Kim

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Non-isothermal crystallization of the newly developed lime-alumina-based mold fluxes was investigated using differential scanning calorimetry. The crystallization kinetic parameters were determined by Ozawa equation, the combined Avrami–Ozawa equation, and the differential iso-conversional method of Friedman. It was found that Ozawa method failed to describe the non-isothermal crystallization behavior of the mold fluxes. The Avrami exponent determined by the combined Avrami–Ozawa equation indicates that the crystallization of cuspidine occurs through bulk nucleation and reaction-controlled three-dimensional growth, and then transforms to reaction-controlled two-dimensional growth at the crystallization later stage in lime-alumina-based mold fluxes with higher B2O3 content. For the mold fluxes with lower B2O3 content (10.8 mass pct), the crystallization of cuspidine is bulk nucleation and reaction-controlled two-dimensional growth at the crystallization primary stage followed by a diffusion-controlled two-dimensional growth process. The crystallization of CaF2 in mold flux originates from bulk nucleation and diffusion-controlled three-dimensional growth, which then transforms to two-dimensional growth. FE-SEM observations support these kinetic analysis results. The effective activation energy for cuspidine crystallization in the mold flux with higher B2O3 and Na2O contents increases as the crystallization progresses, and then decreases at the relative degree of crystallinity greater than 60 pct. The transition point of this trend approximately corresponds to the relative degree of crystallinity at which the crystallization mode of cuspidine transforms. For the mold fluxes with lower B2O3 and Na2O contents, the effective activation energy for cuspidine formation varies monotonically with the increase in the relative degree of crystallinity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K.C. Mills, A.B. Fox, Z. Li, and R.P. Thackray: Ironmaking Steelmaking, 2005, vol. 32, pp. 26–34.CrossRef K.C. Mills, A.B. Fox, Z. Li, and R.P. Thackray: Ironmaking Steelmaking, 2005, vol. 32, pp. 26–34.CrossRef
2.
Zurück zum Zitat H. Nakada, H. Fukuyama, and K. Nagata: ISIJ Int., 2006, vol. 46, pp. 1660–1667.CrossRef H. Nakada, H. Fukuyama, and K. Nagata: ISIJ Int., 2006, vol. 46, pp. 1660–1667.CrossRef
3.
Zurück zum Zitat A.B. Fox, K.C. Mills, D. Lever, C. Bezerra, C. Valadares, I. Unamuno, J.J. Laraudogoitia, and J. Gisby: ISIJ Int., 2005, vol. 45, pp. 1051–1058.CrossRef A.B. Fox, K.C. Mills, D. Lever, C. Bezerra, C. Valadares, I. Unamuno, J.J. Laraudogoitia, and J. Gisby: ISIJ Int., 2005, vol. 45, pp. 1051–1058.CrossRef
4.
Zurück zum Zitat J.W. Cho, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1998, vol. 38, pp. 440–446.CrossRef J.W. Cho, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1998, vol. 38, pp. 440–446.CrossRef
5.
Zurück zum Zitat T.J.H. Billany, A.S. Normanton, K.C. Mills, and P. Grieveson: Ironmaking Steelmaking, 1991, vol. 18, pp. 403–410. T.J.H. Billany, A.S. Normanton, K.C. Mills, and P. Grieveson: Ironmaking Steelmaking, 1991, vol. 18, pp. 403–410.
6.
Zurück zum Zitat J.W. Cho, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1998, vol. 38, pp. 268–275.CrossRef J.W. Cho, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1998, vol. 38, pp. 268–275.CrossRef
7.
8.
Zurück zum Zitat W. Wang, K. Gu, L. Zhou, F. Ma, I. Sohn, D.J. Min, H. Matsuura, and F. Tsukihashi: ISIJ Int., 2011, vol. 51, pp. 1838–1845.CrossRef W. Wang, K. Gu, L. Zhou, F. Ma, I. Sohn, D.J. Min, H. Matsuura, and F. Tsukihashi: ISIJ Int., 2011, vol. 51, pp. 1838–1845.CrossRef
9.
Zurück zum Zitat J.W. Cho, T. Emi, H. Shibata, and M. Suzuki: ISIJ Int., 1998, vol. 38, pp. 834–842.CrossRef J.W. Cho, T. Emi, H. Shibata, and M. Suzuki: ISIJ Int., 1998, vol. 38, pp. 834–842.CrossRef
10.
Zurück zum Zitat T. Kajitani, K. Okazawa, W. Yamada, and H. Yamamura: ISIJ Int., 2006, vol. 46, pp. 250–256.CrossRef T. Kajitani, K. Okazawa, W. Yamada, and H. Yamamura: ISIJ Int., 2006, vol. 46, pp. 250–256.CrossRef
11.
Zurück zum Zitat M. Hayashi, R.A. Abas, and S. Seetharaman: ISIJ Int., 2004, vol. 44, pp. 691–697.CrossRef M. Hayashi, R.A. Abas, and S. Seetharaman: ISIJ Int., 2004, vol. 44, pp. 691–697.CrossRef
12.
Zurück zum Zitat H. Nakada, M. Susa, Y. Seko, M. Hayashi, and K. Nagata: ISIJ Int., 2008, vol. 48, pp. 446–453.CrossRef H. Nakada, M. Susa, Y. Seko, M. Hayashi, and K. Nagata: ISIJ Int., 2008, vol. 48, pp. 446–453.CrossRef
13.
Zurück zum Zitat Y. Kashiwaya, C.E. Cicutti, and A.W. Cramb: ISIJ Int., 1998, vol. 38, pp. 357–365.CrossRef Y. Kashiwaya, C.E. Cicutti, and A.W. Cramb: ISIJ Int., 1998, vol. 38, pp. 357–365.CrossRef
14.
Zurück zum Zitat W. Wang, K. Blazek, and A. Cramb: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 66–74.CrossRef W. Wang, K. Blazek, and A. Cramb: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 66–74.CrossRef
15.
Zurück zum Zitat H.G. Ryu, Z.T. Zhang, J.W. Cho, G.H. Wen, and S. Sridhar: ISIJ Int., 2010, vol. 50, pp. 1142–1150.CrossRef H.G. Ryu, Z.T. Zhang, J.W. Cho, G.H. Wen, and S. Sridhar: ISIJ Int., 2010, vol. 50, pp. 1142–1150.CrossRef
16.
Zurück zum Zitat L. Zhou, W. Wang, D. Huang, J. Wei, and J. Li: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 925–936.CrossRef L. Zhou, W. Wang, D. Huang, J. Wei, and J. Li: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 925–936.CrossRef
18.
Zurück zum Zitat T. Watanabe, H. Hashimoto, M. Hayashi, and K. Nagata: ISIJ Int., 2008, vol. 48, pp. 925–933.CrossRef T. Watanabe, H. Hashimoto, M. Hayashi, and K. Nagata: ISIJ Int., 2008, vol. 48, pp. 925–933.CrossRef
19.
Zurück zum Zitat L. Zhou, W. Wang, F. Ma, J. Li, J. Wei, H. Matsuura, and F. Tsukihashi: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 354–362.CrossRef L. Zhou, W. Wang, F. Ma, J. Li, J. Wei, H. Matsuura, and F. Tsukihashi: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 354–362.CrossRef
20.
Zurück zum Zitat J. Li, W. Wang, J. Wei, D. Huang, and H. Matsuura: ISIJ Int., 2012, vol. 52, pp. 2220–2225.CrossRef J. Li, W. Wang, J. Wei, D. Huang, and H. Matsuura: ISIJ Int., 2012, vol. 52, pp. 2220–2225.CrossRef
21.
Zurück zum Zitat Z. Wang, Q. Shu, and K. Chou: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 606–613.CrossRef Z. Wang, Q. Shu, and K. Chou: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 606–613.CrossRef
22.
Zurück zum Zitat J.W. Cho, K. Blazek, M. Frazee, H.B. Yin, J.H. Park, and S.W. Moon: ISIJ Int., 2013, vol. 53, pp. 62–70.CrossRef J.W. Cho, K. Blazek, M. Frazee, H.B. Yin, J.H. Park, and S.W. Moon: ISIJ Int., 2013, vol. 53, pp. 62–70.CrossRef
23.
Zurück zum Zitat C.B. Shi, M.D. Seo, J.W. Cho, and S.H. Kim: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1081–97.CrossRef C.B. Shi, M.D. Seo, J.W. Cho, and S.H. Kim: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1081–97.CrossRef
24.
25.
29.
30.
Zurück zum Zitat C.T. Cheng, M. Lanaganw, B. Jones, J.T. Lin, and M.J. Pan: J. Am. Ceram. Soc., 2005, vol. 88, pp. 3037–3042.CrossRef C.T. Cheng, M. Lanaganw, B. Jones, J.T. Lin, and M.J. Pan: J. Am. Ceram. Soc., 2005, vol. 88, pp. 3037–3042.CrossRef
31.
Zurück zum Zitat B. Rangarajan, T. Shrout, and M. Lanagan: J. Am. Ceram. Soc., 2009, vol. 92, pp. 2642–2647.CrossRef B. Rangarajan, T. Shrout, and M. Lanagan: J. Am. Ceram. Soc., 2009, vol. 92, pp. 2642–2647.CrossRef
32.
Zurück zum Zitat A. Karamanov, I. Avramov, L. Arrizza, R. Pascova, and I. Gutzow: J. Non-Cryst. Solids, 2012, vol. 358, pp. 1486–1490.CrossRef A. Karamanov, I. Avramov, L. Arrizza, R. Pascova, and I. Gutzow: J. Non-Cryst. Solids, 2012, vol. 358, pp. 1486–1490.CrossRef
33.
Zurück zum Zitat J.M. Pérez, R. Casasola, J.Ma. Rincón, and M. Romero: J. Non-Cryst. Solids, 2012, vol. 358, pp. 2741–2748.CrossRef J.M. Pérez, R. Casasola, J.Ma. Rincón, and M. Romero: J. Non-Cryst. Solids, 2012, vol. 358, pp. 2741–2748.CrossRef
34.
Zurück zum Zitat W. Höland and George H. Beall: Glass-Ceramic Technology, 2nd ed., Wiley, Hoboken, NJ, 2012, pp. 40–74.CrossRef W. Höland and George H. Beall: Glass-Ceramic Technology, 2nd ed., Wiley, Hoboken, NJ, 2012, pp. 40–74.CrossRef
35.
Zurück zum Zitat Y. Tao, Y. Pan, Z. Zhang, and K. Mai: Eur. Polym. J., 2008, vol. 44, pp. 1165–1174.CrossRef Y. Tao, Y. Pan, Z. Zhang, and K. Mai: Eur. Polym. J., 2008, vol. 44, pp. 1165–1174.CrossRef
36.
37.
Zurück zum Zitat S.H. Kim, S.H. Ahn, and T. Hirai: Polym., 2003, vol. 44, pp. 5625–5634.CrossRef S.H. Kim, S.H. Ahn, and T. Hirai: Polym., 2003, vol. 44, pp. 5625–5634.CrossRef
38.
Zurück zum Zitat T. Liu, Z. Mo, S. Wang, and H. Zhang: Polym. Eng. Sci., 1997, vol. 37, pp. 568–575.CrossRef T. Liu, Z. Mo, S. Wang, and H. Zhang: Polym. Eng. Sci., 1997, vol. 37, pp. 568–575.CrossRef
40.
42.
43.
Zurück zum Zitat K. Matusita and S. Sakka: J. Non-Cryst. Solids, 1980, vol. 38-39, pp. 741-746.CrossRef K. Matusita and S. Sakka: J. Non-Cryst. Solids, 1980, vol. 38-39, pp. 741-746.CrossRef
44.
Zurück zum Zitat K. Matusita, T. Komatsu, and R. Yokota: J. Mater. Sci., 1984, vol. 19, 291–296.CrossRef K. Matusita, T. Komatsu, and R. Yokota: J. Mater. Sci., 1984, vol. 19, 291–296.CrossRef
45.
Zurück zum Zitat S.R. Teixeiraw, M. Romero, and J.M. Rincón: J. Am. Ceram. Soc., 2010, vol. 93, pp. 450–455.CrossRef S.R. Teixeiraw, M. Romero, and J.M. Rincón: J. Am. Ceram. Soc., 2010, vol. 93, pp. 450–455.CrossRef
46.
Zurück zum Zitat M. Romero, J. Martíın-Márquez, and J.M. Rincón: J. Eur. Ceram. Soc., 2006, vol. 26, pp. 1647–1652.CrossRef M. Romero, J. Martíın-Márquez, and J.M. Rincón: J. Eur. Ceram. Soc., 2006, vol. 26, pp. 1647–1652.CrossRef
47.
Zurück zum Zitat K.Y. Mya, K.P. Pramoda, and C.B. He: Polym., 2006, vol. 47, pp. 5035–5043.CrossRef K.Y. Mya, K.P. Pramoda, and C.B. He: Polym., 2006, vol. 47, pp. 5035–5043.CrossRef
48.
Zurück zum Zitat S. Zhao, Z. Cai, and Z. Xin: Polymer, 2008, vol. 49, pp. 2745–2754.CrossRef S. Zhao, Z. Cai, and Z. Xin: Polymer, 2008, vol. 49, pp. 2745–2754.CrossRef
49.
Zurück zum Zitat S.Y. Choi, D.H. Lee, D.W. Shin, S.Y Choi, J.W. Cho, and J.M. Park: J. Non-Cryst. Solids, 2004, vol. 345-346, pp. 157–160.CrossRef S.Y. Choi, D.H. Lee, D.W. Shin, S.Y Choi, J.W. Cho, and J.M. Park: J. Non-Cryst. Solids, 2004, vol. 345-346, pp. 157–160.CrossRef
50.
51.
Zurück zum Zitat G.Z. Papageorgioua, D.S. Achiliasa, S. Nanakia, T. Beslikasb, and D. Bikiaris: Thermochim. Acta, 2010, vol. 511, pp. 129–139.CrossRef G.Z. Papageorgioua, D.S. Achiliasa, S. Nanakia, T. Beslikasb, and D. Bikiaris: Thermochim. Acta, 2010, vol. 511, pp. 129–139.CrossRef
52.
Zurück zum Zitat H. Liang, F. Xie, F. Guo, B. Chen, F. Luo, and Z. Jin: Polym. Bull., 2008, vol. 60, pp. 115–127.CrossRef H. Liang, F. Xie, F. Guo, B. Chen, F. Luo, and Z. Jin: Polym. Bull., 2008, vol. 60, pp. 115–127.CrossRef
53.
Zurück zum Zitat [53] N. Apiwanthanakorn, P. Supaphol, and M. Nithitanakul: Polym. Test., 2004, vol. 23, pp. 817–826.CrossRef [53] N. Apiwanthanakorn, P. Supaphol, and M. Nithitanakul: Polym. Test., 2004, vol. 23, pp. 817–826.CrossRef
Metadaten
Titel
Crystallization Kinetics and Mechanism of CaO–Al2O3-Based Mold Flux for Casting High-Aluminum TRIP Steels
verfasst von
Cheng-Bin Shi
Myung-Duk Seo
Hui Wang
Jung-Wook Cho
Seon-Hyo Kim
Publikationsdatum
01.02.2015
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 1/2015
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-014-0180-2

Weitere Artikel der Ausgabe 1/2015

Metallurgical and Materials Transactions B 1/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.