Skip to main content

24.04.2024 | Research

CSCNN: Lightweight Modulation Recognition Model for Mobile Multimedia Intelligent Information Processing

verfasst von: Jun Chen, Yiping Huang, Ling Zhang, Guangzhen Si, Juzhen Wang

Erschienen in: Mobile Networks and Applications

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new round of global technological revolution and industrial transformation is accelerating. The era of 6G is on the horizon, envisioning the creation of an integrated network spanning across regions, airspace, seas, and land. This integration aims to achieve a truly global seamless coverage. Simultaneously, the importance of modulation recognition technology is continuously growing in tandem with the advancements in communication technology during this 6G vision. But faced with the vast amount of electromagnetic data and limited computing resources of terminal devices, previous technologies were unable to meet the realtime decision-making requirements for processing short observations or sudden bursts of signals in deployable systems. In this paper, to better leverage the correlation in the I/Q data of communication signals, our approach proposes the Deep Complex Separable Convolution (DCSC) operation by combining separable convolution operation and complex convolution operation. At the same time, to better preserve coupling information between channels and minimize the model size, we propose the Multilevel Separable Convolutional Residual Block (MSCRB). Based on the above two methods, we constructed the Complex Separable Convolutional Neural Network (CSCNN). This neural network significantly reduces the complexity of the deep learning model. We conducted experiments on RML2016.10a dataset and a dataset we created using signals collected through software-defined radio platform. On the RML2016 dataset, the smallest network we constructed, CSCNN-Tiny, has a model size of 3.04M, only 24.6% of the size of MobileNet. With 1.361M Flops, only 6% of MobileNet. However, it achieved a recognition accuracy of 52.45%, which is 0.54% higher than MobileNet.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Lin Y, Zhao H, Ma X, Tu Y, Wang M (2020) Adversarial attacks in modulation recognition with convolutional neural net-works. IEEE Trans Reliab 70(1):389–401CrossRef Lin Y, Zhao H, Ma X, Tu Y, Wang M (2020) Adversarial attacks in modulation recognition with convolutional neural net-works. IEEE Trans Reliab 70(1):389–401CrossRef
2.
Zurück zum Zitat Ma X, Shi H, Miao X, Li Q, Wang X, Ding L, Zhang H, Dai K (2023) Multiple dynamic impact signal identification method based on lightweight neural network with acceleration sensor. IEEE Sens J 23(15):17289–17300CrossRef Ma X, Shi H, Miao X, Li Q, Wang X, Ding L, Zhang H, Dai K (2023) Multiple dynamic impact signal identification method based on lightweight neural network with acceleration sensor. IEEE Sens J 23(15):17289–17300CrossRef
3.
Zurück zum Zitat Yao Z, Fu X, Guo L, Wang Y, Lin Y, Shi S, Gui G (2023) Few-shot specific emitter identification using asymmetric masked auto-encoder. IEEE Commun Lett 27(10):2657–2661CrossRef Yao Z, Fu X, Guo L, Wang Y, Lin Y, Shi S, Gui G (2023) Few-shot specific emitter identification using asymmetric masked auto-encoder. IEEE Commun Lett 27(10):2657–2661CrossRef
4.
Zurück zum Zitat Lin Y, Wang M, Zhou X, Ding G, Mao S (2020) Dynamic spectrum interaction of UAV flight formation communication with priority: A deep reinforcement learning approach. IEEE Trans Cogn Commun Netw 6(3):892–903CrossRef Lin Y, Wang M, Zhou X, Ding G, Mao S (2020) Dynamic spectrum interaction of UAV flight formation communication with priority: A deep reinforcement learning approach. IEEE Trans Cogn Commun Netw 6(3):892–903CrossRef
5.
Zurück zum Zitat Tu Y, Lin Y, Wang J, Kim JU (2018) Semi-Supervised Learning with Generative Adversarial Networks on Digital Signal Modu-lation Classification. Computers, Materials and Continua. 55(2):243–254 Tu Y, Lin Y, Wang J, Kim JU (2018) Semi-Supervised Learning with Generative Adversarial Networks on Digital Signal Modu-lation Classification. Computers, Materials and Continua. 55(2):243–254
6.
Zurück zum Zitat Yang C, Wang Y, Zhang J, Zhang H, Wei Z, Lin Z, Yuille A (2022) Lite vision transformer with enhanced self-attention. Pro-ceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp11998–12008 Yang C, Wang Y, Zhang J, Zhang H, Wei Z, Lin Z, Yuille A (2022) Lite vision transformer with enhanced self-attention. Pro-ceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp11998–12008
7.
Zurück zum Zitat Lin Y, Tu Y, Dou Z, Chen L, Mao S (2020) Contour stella image and deep learning for signal recognition in the physical layer. IEEE Trans Cogn Commun Netw 7(1):34–46CrossRef Lin Y, Tu Y, Dou Z, Chen L, Mao S (2020) Contour stella image and deep learning for signal recognition in the physical layer. IEEE Trans Cogn Commun Netw 7(1):34–46CrossRef
9.
Zurück zum Zitat Tu Y, Lin Y, Hou C, Mao S (2020) Complex-valued networks for automatic modulation classification. IEEE Trans Ve-hicular Technol 69(9):10085–10089CrossRef Tu Y, Lin Y, Hou C, Mao S (2020) Complex-valued networks for automatic modulation classification. IEEE Trans Ve-hicular Technol 69(9):10085–10089CrossRef
10.
Zurück zum Zitat Zhou Z, Chen X, Li E, Zeng L, Luo K, Zhang J (2019) Edge intelligence: Paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE 107(8):1738–1762CrossRef Zhou Z, Chen X, Li E, Zeng L, Luo K, Zhang J (2019) Edge intelligence: Paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE 107(8):1738–1762CrossRef
12.
Zurück zum Zitat Goudarzi M, Wu H, Palaniswami M, Buyya R (2020) An application placement technique for concurrent IoT applications in edge and fog computing environments. IEEE Trans Mob Comput 20(4):1298–1311CrossRef Goudarzi M, Wu H, Palaniswami M, Buyya R (2020) An application placement technique for concurrent IoT applications in edge and fog computing environments. IEEE Trans Mob Comput 20(4):1298–1311CrossRef
13.
Zurück zum Zitat Bao Z, Lin Y, Zhang S, Li Z, Mao S (2021) Threat of adversarial attacks on DL-based IoT device identification. IEEE Internet Things J 9(11):9012–9024CrossRef Bao Z, Lin Y, Zhang S, Li Z, Mao S (2021) Threat of adversarial attacks on DL-based IoT device identification. IEEE Internet Things J 9(11):9012–9024CrossRef
14.
Zurück zum Zitat Chen J, Ran X (2019) Deep learning with edge computing: A review. Proceedings of the IEEE 107(8):1655–1674CrossRef Chen J, Ran X (2019) Deep learning with edge computing: A review. Proceedings of the IEEE 107(8):1655–1674CrossRef
15.
Zurück zum Zitat Liu C, Fu X, Wang Y, Guo L, Liu Y, Lin Y, Zhao H, Gui G (2023) Overcoming data limitations: a few-shot specific emitter identification method using self-supervised learning and adversarial augmentation. IEEE Trans Inform Forensics Secur 19:500–513CrossRef Liu C, Fu X, Wang Y, Guo L, Liu Y, Lin Y, Zhao H, Gui G (2023) Overcoming data limitations: a few-shot specific emitter identification method using self-supervised learning and adversarial augmentation. IEEE Trans Inform Forensics Secur 19:500–513CrossRef
16.
Zurück zum Zitat Lin Y, Tu Y, Dou Z (2020) An improved neural network pruning technology for automatic modulation classification in edge de-vices. IEEE Trans Veh Technol 69(5):5703–5706CrossRef Lin Y, Tu Y, Dou Z (2020) An improved neural network pruning technology for automatic modulation classification in edge de-vices. IEEE Trans Veh Technol 69(5):5703–5706CrossRef
17.
Zurück zum Zitat Song M, Lou L, Chen X, Zhao X, Hong Y, Zhang S, He W (2023) Wi-LADL: A Wireless-Based Lightweight Attention Deep Learning Method for Human?Vehicle Recognition. IEEE Sens J 23(3):2803–2814CrossRef Song M, Lou L, Chen X, Zhao X, Hong Y, Zhang S, He W (2023) Wi-LADL: A Wireless-Based Lightweight Attention Deep Learning Method for Human?Vehicle Recognition. IEEE Sens J 23(3):2803–2814CrossRef
18.
Zurück zum Zitat Wang S, Tuor T, Salonidis T, Leung KK, Makaya C, He T, Chan K (2019) Adaptive federated learning in resource constrained edge computing systems. IEEE J Sel Areas Commun 37(6):1205–1221CrossRef Wang S, Tuor T, Salonidis T, Leung KK, Makaya C, He T, Chan K (2019) Adaptive federated learning in resource constrained edge computing systems. IEEE J Sel Areas Commun 37(6):1205–1221CrossRef
19.
Zurück zum Zitat Li X, Wang W, Hu X, Yang J (2019) Selective kernel networks. Proceedings of the IEEE/CVF conference on computer vision and pat-tern recognition (CVPR), pp 510–519 Li X, Wang W, Hu X, Yang J (2019) Selective kernel networks. Proceedings of the IEEE/CVF conference on computer vision and pat-tern recognition (CVPR), pp 510–519
20.
Zurück zum Zitat Zoph B, Vasudevan V, Shlens J, Le QV (2018) Learning Transferable Architectures for Scalable Image Recognition. Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 8697–8710 Zoph B, Vasudevan V, Shlens J, Le QV (2018) Learning Transferable Architectures for Scalable Image Recognition. Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 8697–8710
21.
Zurück zum Zitat Ma N, Zhang X, Zheng H T, Sun J (2018) Shufflenet v2: Practical guidelines for efficient cnn architecture. Proceedings of the Euro-pean conference on computer vision (ECCV), pp 116–131 Ma N, Zhang X, Zheng H T, Sun J (2018) Shufflenet v2: Practical guidelines for efficient cnn architecture. Proceedings of the Euro-pean conference on computer vision (ECCV), pp 116–131
22.
Zurück zum Zitat Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) Mobilenetv2: Inverted residuals and linear bottlenecks. Proceed-ings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 4510–4520 Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) Mobilenetv2: Inverted residuals and linear bottlenecks. Proceed-ings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 4510–4520
23.
Zurück zum Zitat Huang G, Liu Z, Maaten L, Weinberger K (2017) Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 4700–4708 Huang G, Liu Z, Maaten L, Weinberger K (2017) Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 4700–4708
24.
Zurück zum Zitat Xie S, Girshick R, Dollr P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1492–1500 Xie S, Girshick R, Dollr P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1492–1500
25.
Zurück zum Zitat O’shea TJ, West N (2016) Radio machine learning dataset generation with gnu radio. Proceedings of the GNU radio conference, 1(1) O’shea TJ, West N (2016) Radio machine learning dataset generation with gnu radio. Proceedings of the GNU radio conference, 1(1)
Metadaten
Titel
CSCNN: Lightweight Modulation Recognition Model for Mobile Multimedia Intelligent Information Processing
verfasst von
Jun Chen
Yiping Huang
Ling Zhang
Guangzhen Si
Juzhen Wang
Publikationsdatum
24.04.2024
Verlag
Springer US
Erschienen in
Mobile Networks and Applications
Print ISSN: 1383-469X
Elektronische ISSN: 1572-8153
DOI
https://doi.org/10.1007/s11036-024-02317-9