Skip to main content
Erschienen in: Electrical Engineering 1/2015

01.03.2015 | Original Paper

Current-tunable current-mode RMS detector

verfasst von: Predrag B. Petrović

Erschienen in: Electrical Engineering | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new realization of root mean square (RMS) detector comprising two controlled current conveyors, metal-oxide-semiconductor transistors and a single grounded capacitor is presented in this paper, without any external resistors and components matching requirements added. The proposed circuit can be used for measuring the RMS value of periodic, band-limited signals. Inherently, the circuit is well suited for IC implementation. The errors related to signal processing and errors bound were investigated and provided. To verify the theoretical analysis, the circuit PSpice simulations have also been included, showing good agreement with the theory. The maximum power consumption of the converter is \(\sim \)4.28 mW, at \(\pm \)1.25 V supply voltages.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Northrop RB (1990) Analog electronics circuits. Addison-Wesley, Reading Northrop RB (1990) Analog electronics circuits. Addison-Wesley, Reading
2.
Zurück zum Zitat Heavey P, Whitney C (2004) RMS measuring principles in the application of protective relaying and metering. In: Proceedings of the 57th annual conference protective relay engineering, pp 469–489 Heavey P, Whitney C (2004) RMS measuring principles in the application of protective relaying and metering. In: Proceedings of the 57th annual conference protective relay engineering, pp 469–489
3.
Zurück zum Zitat Pogliana U (1997) Precision measurement of AC voltage below 20 Hz at IEN. IEEE Trans Instrum Meas 46(2):369–372CrossRef Pogliana U (1997) Precision measurement of AC voltage below 20 Hz at IEN. IEEE Trans Instrum Meas 46(2):369–372CrossRef
4.
Zurück zum Zitat Germer H (2001) High-precision AC measurements using the Monte-Carlo method. IEEE Trans Instrum Meas 50(2):457–460CrossRef Germer H (2001) High-precision AC measurements using the Monte-Carlo method. IEEE Trans Instrum Meas 50(2):457–460CrossRef
5.
Zurück zum Zitat Yoon W-K, Deveney MJ (1998) Power measurement using the wavelet transform. IEEE Trans Instrum Meas 47(5):1205–1210CrossRef Yoon W-K, Deveney MJ (1998) Power measurement using the wavelet transform. IEEE Trans Instrum Meas 47(5):1205–1210CrossRef
6.
Zurück zum Zitat Novotny M, Sedlacek M (2008) RMS value measurement based on classical and modified digital signal processing algorithms. Measurement 41(3):236–250CrossRef Novotny M, Sedlacek M (2008) RMS value measurement based on classical and modified digital signal processing algorithms. Measurement 41(3):236–250CrossRef
7.
Zurück zum Zitat True RMS detector (2002) National semiconductor application note AN008474 True RMS detector (2002) National semiconductor application note AN008474
8.
Zurück zum Zitat DSCA33 ISOLATED True RMS Input Module (2011) AN101 Dataforth Corporation, USA DSCA33 ISOLATED True RMS Input Module (2011) AN101 Dataforth Corporation, USA
9.
Zurück zum Zitat Frey DR (2004) Exact analysis of implicit RMS converters. Electron. Lett. 40(5):283–284CrossRef Frey DR (2004) Exact analysis of implicit RMS converters. Electron. Lett. 40(5):283–284CrossRef
10.
Zurück zum Zitat Abulma’atti MT (2009) Improved analysis of implicit RMS detectors. IEEE Trans Instrum Meas 58(3):502–505CrossRef Abulma’atti MT (2009) Improved analysis of implicit RMS detectors. IEEE Trans Instrum Meas 58(3):502–505CrossRef
11.
Zurück zum Zitat High Precision, Wide-Band RMS-to-DC Converter (2011) Analog devices application note AD637 High Precision, Wide-Band RMS-to-DC Converter (2011) Analog devices application note AD637
12.
Zurück zum Zitat Precision Wide Bandwidth, RMS-to-DC Converter (2004) Linear technology application note LTC1968 Precision Wide Bandwidth, RMS-to-DC Converter (2004) Linear technology application note LTC1968
13.
Zurück zum Zitat Mulder J, Serdijn WA, Woerd AC, Roermund AHM (1996) Dynamic translinear RMS-DC converter. Electron Lett 32:2067–2068CrossRef Mulder J, Serdijn WA, Woerd AC, Roermund AHM (1996) Dynamic translinear RMS-DC converter. Electron Lett 32:2067–2068CrossRef
14.
Zurück zum Zitat Mulder J, Serdijn WA, Roermund AHM (1997) An RMS-DC converter base don the dynamic translinear principle. IEEE Solid-State Circuits 32:1146–1150CrossRef Mulder J, Serdijn WA, Roermund AHM (1997) An RMS-DC converter base don the dynamic translinear principle. IEEE Solid-State Circuits 32:1146–1150CrossRef
15.
Zurück zum Zitat Surakampontron W, Kumwachara K (1999) A dual translinear-based RMS-to-DC converter. IEEE Trans Instrum Meas 47:456–464 Surakampontron W, Kumwachara K (1999) A dual translinear-based RMS-to-DC converter. IEEE Trans Instrum Meas 47:456–464
16.
Zurück zum Zitat Wasseneaar RF, Seevinck E, van Leeuwen MG, Speelman CJ, Holle E (1998) New techniques for high-frequency RMS-to-DC conversion based on a multifunctional V-to-I convertor. IEEE J Solid State Circuits 23(3):802–815 Wasseneaar RF, Seevinck E, van Leeuwen MG, Speelman CJ, Holle E (1998) New techniques for high-frequency RMS-to-DC conversion based on a multifunctional V-to-I convertor. IEEE J Solid State Circuits 23(3):802–815
17.
Zurück zum Zitat Milanović V, Gaitan M, Bowen ED, Tea NH, Zaghlou ME (1997) Thermoelectric power sensors for microwave applications by commercial CMOS fabrication. IEEE Electron Device Lett 18(9):450–452CrossRef Milanović V, Gaitan M, Bowen ED, Tea NH, Zaghlou ME (1997) Thermoelectric power sensors for microwave applications by commercial CMOS fabrication. IEEE Electron Device Lett 18(9):450–452CrossRef
18.
Zurück zum Zitat Sedra AS, Smith KC (1970) A second-generation current conveyor and its applications. IEEE Trans Circuit Theory CT–17(1):132–134CrossRef Sedra AS, Smith KC (1970) A second-generation current conveyor and its applications. IEEE Trans Circuit Theory CT–17(1):132–134CrossRef
19.
Zurück zum Zitat Yuce E, Minaei S, Tokat S (2007) Root-mean-square measurement of distinct voltage signals. IEEE Trans Instrum Meas 56(6):2782–2787CrossRef Yuce E, Minaei S, Tokat S (2007) Root-mean-square measurement of distinct voltage signals. IEEE Trans Instrum Meas 56(6):2782–2787CrossRef
20.
Zurück zum Zitat Fabre A, Saaid O, Wiest F, Boucheron C (1995) Current controllable bandpass filter based on translinear conveyors. Electron Lett 31:1727–1728CrossRef Fabre A, Saaid O, Wiest F, Boucheron C (1995) Current controllable bandpass filter based on translinear conveyors. Electron Lett 31:1727–1728CrossRef
21.
Zurück zum Zitat Pal K (1989) Modified current conveyors and their applications. Microelectron J 20:37–40CrossRef Pal K (1989) Modified current conveyors and their applications. Microelectron J 20:37–40CrossRef
22.
Zurück zum Zitat Soliman AM (1998) Modified current conveyor filters: classification and review. Microelectron J 29:133–149CrossRef Soliman AM (1998) Modified current conveyor filters: classification and review. Microelectron J 29:133–149CrossRef
23.
Zurück zum Zitat Tangsrirat W, Surakampontorn W (2007) High output impendance current-mode universal filter employing dual-output current-controlled conveyors and grounded capacitors. AEU-Int J Electron Commun 61:127–131CrossRef Tangsrirat W, Surakampontorn W (2007) High output impendance current-mode universal filter employing dual-output current-controlled conveyors and grounded capacitors. AEU-Int J Electron Commun 61:127–131CrossRef
24.
Zurück zum Zitat Fabre A, Saaid O, Barthelemy H (1995) On the frequency limitations of the circuits based on the second generation current conveyors. Analog Integr Circuits Signal Process 7(2):113–129CrossRef Fabre A, Saaid O, Barthelemy H (1995) On the frequency limitations of the circuits based on the second generation current conveyors. Analog Integr Circuits Signal Process 7(2):113–129CrossRef
25.
Zurück zum Zitat Petrovic P, Zupunski I (2013) RMS detector of periodic, band-limited signals based on usage of DO-CCIIs. Measurement 46(9):3073–3083CrossRef Petrovic P, Zupunski I (2013) RMS detector of periodic, band-limited signals based on usage of DO-CCIIs. Measurement 46(9):3073–3083CrossRef
26.
Zurück zum Zitat Petrović P (2012) Root-mean-square measurement of periodic, band-limited signals. In: Proceedings of IEEE international conference on instrumentation and measurement technology (I2MTC), pp 323–327 Petrović P (2012) Root-mean-square measurement of periodic, band-limited signals. In: Proceedings of IEEE international conference on instrumentation and measurement technology (I2MTC), pp 323–327
27.
Zurück zum Zitat Maneatis JG (1996) Low-jitter process-independent DLL and PLL based on self-biased techniques. IEEE J Solid State Circuits 31(11):1723–1732CrossRef Maneatis JG (1996) Low-jitter process-independent DLL and PLL based on self-biased techniques. IEEE J Solid State Circuits 31(11):1723–1732CrossRef
28.
Zurück zum Zitat Ingels M (1999) A 1-Gb/s, 0.7-\(\mu \)m CMOS optical receiver with full rail-to-rail output swing. IEEE J Soid. State Circuits 34(7):971–977 Ingels M (1999) A 1-Gb/s, 0.7-\(\mu \)m CMOS optical receiver with full rail-to-rail output swing. IEEE J Soid. State Circuits 34(7):971–977
29.
Zurück zum Zitat Grewing C, Winterberg K, Waasen S, Friedrich M, Puma GL, Wiesbauer A, Sandner C (2004) Fully integrated distributed power amplifier in CMOS technology, optimized for UWB transmitters. In: Proceedings of the radio frequency integrated circuits symposium, pp 87–90 Grewing C, Winterberg K, Waasen S, Friedrich M, Puma GL, Wiesbauer A, Sandner C (2004) Fully integrated distributed power amplifier in CMOS technology, optimized for UWB transmitters. In: Proceedings of the radio frequency integrated circuits symposium, pp 87–90
30.
Zurück zum Zitat Petrovic P, Stevanovic M (2006) Measuring of active power of synchronously sampled AC signals in presence of interharmnoics and subharmonics. IEE Proc Electr Power Appl 153(2):227–235CrossRef Petrovic P, Stevanovic M (2006) Measuring of active power of synchronously sampled AC signals in presence of interharmnoics and subharmonics. IEE Proc Electr Power Appl 153(2):227–235CrossRef
31.
Zurück zum Zitat Zhang T, Eisenstadt WR, Fox RM, Yin Q (2006) Bipolar RMS power detectors. IEEE J Solid State Circuits 41(9):2188–2192 Zhang T, Eisenstadt WR, Fox RM, Yin Q (2006) Bipolar RMS power detectors. IEEE J Solid State Circuits 41(9):2188–2192
32.
Zurück zum Zitat Rumberg B, Graham DW (2012) A low-power magnitude detector for analysis of transient-rich signals. IEEE J Solid State Circuits 47(3):676–685CrossRef Rumberg B, Graham DW (2012) A low-power magnitude detector for analysis of transient-rich signals. IEEE J Solid State Circuits 47(3):676–685CrossRef
33.
Zurück zum Zitat Abdul-Karim MAH, Taha SMR, Omran SS (1987) Microprocessor-based implicit RMS meter. Int J Electron 62(6):953–959CrossRef Abdul-Karim MAH, Taha SMR, Omran SS (1987) Microprocessor-based implicit RMS meter. Int J Electron 62(6):953–959CrossRef
34.
Zurück zum Zitat Minaei S, Sayin OK, Kuntman H (2006) A new CMOS electronically tuneable current conveyor and its application to current-mode filters. IEEE Trans Circuits Syst I 53(7):1448–1457CrossRef Minaei S, Sayin OK, Kuntman H (2006) A new CMOS electronically tuneable current conveyor and its application to current-mode filters. IEEE Trans Circuits Syst I 53(7):1448–1457CrossRef
35.
Zurück zum Zitat GUM-Guide to the Expression of Uncertainty in Measurement (1993) ISO-1993 GUM-Guide to the Expression of Uncertainty in Measurement (1993) ISO-1993
36.
Zurück zum Zitat Prommee P, Angkeaw K, Somdunyakanok M, Dejhan K (2009) CMOS-based near zero-offset multiple inputs max-min circuits and its applications. Analog Integr Circuits Signal Process 61:93–105CrossRef Prommee P, Angkeaw K, Somdunyakanok M, Dejhan K (2009) CMOS-based near zero-offset multiple inputs max-min circuits and its applications. Analog Integr Circuits Signal Process 61:93–105CrossRef
37.
Zurück zum Zitat Achigui HJ, Fayomi C, Massicotte D, Boukadoum M (2011) Low-voltage, high-speed CMOS analog latched voltage comparator using the “flipped voltage follower” as input stage. Microelectron J 42:785–789CrossRef Achigui HJ, Fayomi C, Massicotte D, Boukadoum M (2011) Low-voltage, high-speed CMOS analog latched voltage comparator using the “flipped voltage follower” as input stage. Microelectron J 42:785–789CrossRef
38.
Zurück zum Zitat Precision CMOS analog switches (1994) MAXIM, data sheet Precision CMOS analog switches (1994) MAXIM, data sheet
39.
Zurück zum Zitat Single positive-edge-triggered D-type flip-flop SN74LVC1G80 (2007) Texsas Instruments, data sheet Single positive-edge-triggered D-type flip-flop SN74LVC1G80 (2007) Texsas Instruments, data sheet
40.
Zurück zum Zitat Annema AJ, Goksun GA (2012) 0.0025mm2 bandgap voltage reference for 1.1 V supply in standard 0.16 \(\mu \)m CMOS. In: Proceedings of 2012 IEEE international solid-state circuits conference, pp 364–366 Annema AJ, Goksun GA (2012) 0.0025mm2 bandgap voltage reference for 1.1 V supply in standard 0.16 \(\mu \)m CMOS. In: Proceedings of 2012 IEEE international solid-state circuits conference, pp 364–366
41.
Zurück zum Zitat Prommee P, Angkeaw K, Somdunyakanok M, Dejhan K (2009) CMOS-based near zero-offset multiple inputs max-min circuits and its applications. Analog Integr Circuits Signal Process 61:93–105CrossRef Prommee P, Angkeaw K, Somdunyakanok M, Dejhan K (2009) CMOS-based near zero-offset multiple inputs max-min circuits and its applications. Analog Integr Circuits Signal Process 61:93–105CrossRef
42.
Zurück zum Zitat Banba H, Shiga H, Umezawa A, Miyaba T, Tanzawa T, Atsumi S, Sakui K (1999) A CMOS bandgap reference circuit with sub-1V operation. IEEE J Solid State Circuits 34(5):670–674CrossRef Banba H, Shiga H, Umezawa A, Miyaba T, Tanzawa T, Atsumi S, Sakui K (1999) A CMOS bandgap reference circuit with sub-1V operation. IEEE J Solid State Circuits 34(5):670–674CrossRef
43.
Zurück zum Zitat Kaewdang K, Kumwachara K, Surakampontorn W (2009) A translinear-based true RMS-to-DC converter using only npn BJTs. AEU-Int J Electron Commun 63(6):472–477CrossRef Kaewdang K, Kumwachara K, Surakampontorn W (2009) A translinear-based true RMS-to-DC converter using only npn BJTs. AEU-Int J Electron Commun 63(6):472–477CrossRef
44.
Zurück zum Zitat Yhang T, Eisenstadt WR, Fox RM, Yin Q (2006) Bipolar RMS power detectors. IEEE J Solid State Circuits 41(9):2188–2192CrossRef Yhang T, Eisenstadt WR, Fox RM, Yin Q (2006) Bipolar RMS power detectors. IEEE J Solid State Circuits 41(9):2188–2192CrossRef
45.
Zurück zum Zitat Spencer RR (1991) Analog implementation of artificial neural networks. Proc IEEE Int Symp Circuits Syst 2:1271–1274 Spencer RR (1991) Analog implementation of artificial neural networks. Proc IEEE Int Symp Circuits Syst 2:1271–1274
Metadaten
Titel
Current-tunable current-mode RMS detector
verfasst von
Predrag B. Petrović
Publikationsdatum
01.03.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 1/2015
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-014-0313-2

Weitere Artikel der Ausgabe 1/2015

Electrical Engineering 1/2015 Zur Ausgabe

Neuer Inhalt