Skip to main content
Erschienen in: Neural Computing and Applications 5/2023

15.10.2022 | Original Article

DAE-PINN: a physics-informed neural network model for simulating differential algebraic equations with application to power networks

verfasst von: Christian Moya, Guang Lin

Erschienen in: Neural Computing and Applications | Ausgabe 5/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Deep learning-based surrogate modeling is becoming a promising approach for learning and simulating dynamical systems. However, deep-learning methods find it very challenging to learn stiff dynamics. In this paper, we develop DAE-PINN, the first effective physics-informed deep-learning framework for learning and simulating the solution trajectories of nonlinear differential-algebraic equations (DAE). DAEs are used to model complex engineering systems, e.g., power networks, and present a “form” of infinite stiffness, which makes learning their solution trajectories challenging. Our DAE-PINN bases its effectiveness on the synergy between implicit Runge–Kutta time-stepping schemes (designed specifically for solving DAEs) and physics-informed neural networks (PINN) (deep neural networks that we train to satisfy the dynamics of the underlying problem). Furthermore, our framework (i) enforces the neural network to satisfy the DAEs as (approximate) hard constraints using a penalty-based method and (ii) enables simulating DAEs for long-time horizons. We showcase the effectiveness and accuracy of DAE-PINN by learning the solution trajectories of a three-bus power network.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Observe that our proposed framework does not require supervision, i.e., it does not require to know target values of the solution trajectory.
 
Literatur
1.
Zurück zum Zitat Alvarado F, Oren S (2002) Transmission system operation and interconnection. National transmission grid study–Issue papers, pp A1–A35 Alvarado F, Oren S (2002) Transmission system operation and interconnection. National transmission grid study–Issue papers, pp A1–A35
2.
Zurück zum Zitat Aristidou P, Fabozzi D, Van Cutsem T (2013) Dynamic simulation of large-scale power systems using a parallel schur-complement-based decomposition method. IEEE Trans Parallel Distrib Syst 25(10):2561–2570CrossRef Aristidou P, Fabozzi D, Van Cutsem T (2013) Dynamic simulation of large-scale power systems using a parallel schur-complement-based decomposition method. IEEE Trans Parallel Distrib Syst 25(10):2561–2570CrossRef
3.
Zurück zum Zitat Baker N, Alexander F, Bremer T et al (2019) Workshop report on basic research needs for scientific machine learning: Core technologies for artificial intelligence. Tech. rep, USDOE Office of Science (SC), Washington, DC (United States) Baker N, Alexander F, Bremer T et al (2019) Workshop report on basic research needs for scientific machine learning: Core technologies for artificial intelligence. Tech. rep, USDOE Office of Science (SC), Washington, DC (United States)
4.
Zurück zum Zitat Brunton SL, Proctor JL, Kutz JN (2016) Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc Natl Acad Sci 113(15):3932–3937CrossRefMATH Brunton SL, Proctor JL, Kutz JN (2016) Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc Natl Acad Sci 113(15):3932–3937CrossRefMATH
5.
Zurück zum Zitat Brunton SL, Proctor JL, Kutz JN (2016) Sparse identification of nonlinear dynamics with control (sindyc). IFAC-PapersOnLine 49(18):710–715CrossRef Brunton SL, Proctor JL, Kutz JN (2016) Sparse identification of nonlinear dynamics with control (sindyc). IFAC-PapersOnLine 49(18):710–715CrossRef
6.
Zurück zum Zitat Chao H (2002) Implementation of parallel-in-time Newton method for transient stability analysis on a message passing multicomputer. In: Proceedings of international conference on power system technology. IEEE, pp 1239–1243 Chao H (2002) Implementation of parallel-in-time Newton method for transient stability analysis on a message passing multicomputer. In: Proceedings of international conference on power system technology. IEEE, pp 1239–1243
7.
Zurück zum Zitat Chen J, Li K, Bilal K et al (2018) A bi-layered parallel training architecture for large-scale convolutional neural networks. IEEE Trans Parallel Distrib Syst 30(5):965–976CrossRef Chen J, Li K, Bilal K et al (2018) A bi-layered parallel training architecture for large-scale convolutional neural networks. IEEE Trans Parallel Distrib Syst 30(5):965–976CrossRef
8.
Zurück zum Zitat Chen J, Li K, Philip SY (2021) Privacy-preserving deep learning model for decentralized vanets using fully homomorphic encryption and blockchain. IEEE Trans Intell Transp Syst Chen J, Li K, Philip SY (2021) Privacy-preserving deep learning model for decentralized vanets using fully homomorphic encryption and blockchain. IEEE Trans Intell Transp Syst
9.
10.
Zurück zum Zitat Chiang HD (2011) Direct methods for stability analysis of electric power systems: theoretical foundation, BCU methodologies, and applications. Wiley, New York Chiang HD (2011) Direct methods for stability analysis of electric power systems: theoretical foundation, BCU methodologies, and applications. Wiley, New York
11.
Zurück zum Zitat Chiang HD, Wu FF, Varaiya PP (1994) A bcu method for direct analysis of power system transient stability. IEEE Trans Power Syst 9(3):1194–1208CrossRef Chiang HD, Wu FF, Varaiya PP (1994) A bcu method for direct analysis of power system transient stability. IEEE Trans Power Syst 9(3):1194–1208CrossRef
12.
Zurück zum Zitat Chung E, Leung WT, Pun SM et al (2021) A multi-stage deep learning based algorithm for multiscale model reduction. J Comput Appl Math 394(113):506MATH Chung E, Leung WT, Pun SM et al (2021) A multi-stage deep learning based algorithm for multiscale model reduction. J Comput Appl Math 394(113):506MATH
13.
Zurück zum Zitat Fabozzi D, Chieh AS, Haut B et al (2013) Accelerated and localized newton schemes for faster dynamic simulation of large power systems. IEEE Trans Power Syst 28(4):4936–4947CrossRef Fabozzi D, Chieh AS, Haut B et al (2013) Accelerated and localized newton schemes for faster dynamic simulation of large power systems. IEEE Trans Power Syst 28(4):4936–4947CrossRef
14.
Zurück zum Zitat Gupta A, Gurrala G, Sastry P (2018) An online power system stability monitoring system using convolutional neural networks. IEEE Trans Power Syst 34(2):864–872CrossRef Gupta A, Gurrala G, Sastry P (2018) An online power system stability monitoring system using convolutional neural networks. IEEE Trans Power Syst 34(2):864–872CrossRef
15.
Zurück zum Zitat Gurrala G, Dimitrovski A, Pannala S et al (2015) Parareal in time for fast power system dynamic simulations. IEEE Trans Power Syst 31(3):1820–1830CrossRef Gurrala G, Dimitrovski A, Pannala S et al (2015) Parareal in time for fast power system dynamic simulations. IEEE Trans Power Syst 31(3):1820–1830CrossRef
16.
Zurück zum Zitat Hairer E, Lubich C, Roche M (2006) The numerical solution of differential-algebraic systems by Runge–Kutta methods, vol 1409. Springer, BerlinMATH Hairer E, Lubich C, Roche M (2006) The numerical solution of differential-algebraic systems by Runge–Kutta methods, vol 1409. Springer, BerlinMATH
17.
Zurück zum Zitat He M, Zhang J, Vittal V (2013) Robust online dynamic security assessment using adaptive ensemble decision-tree learning. IEEE Trans Power Syst 28(4):4089–4098CrossRef He M, Zhang J, Vittal V (2013) Robust online dynamic security assessment using adaptive ensemble decision-tree learning. IEEE Trans Power Syst 28(4):4089–4098CrossRef
18.
Zurück zum Zitat Hiskens IA, Hill DJ (1989) Energy functions, transient stability and voltage behaviour in power systems with nonlinear loads. IEEE Trans Power Syst 4(4):1525–1533CrossRef Hiskens IA, Hill DJ (1989) Energy functions, transient stability and voltage behaviour in power systems with nonlinear loads. IEEE Trans Power Syst 4(4):1525–1533CrossRef
19.
Zurück zum Zitat Iserles A (2009) A first course in the numerical analysis of differential equations, vol 44. Cambridge University Press, New YorkMATH Iserles A (2009) A first course in the numerical analysis of differential equations, vol 44. Cambridge University Press, New YorkMATH
20.
Zurück zum Zitat James J, Hill DJ, Lam AY et al (2017) Intelligent time-adaptive transient stability assessment system. IEEE Trans Power Syst 33(1):1049–1058 James J, Hill DJ, Lam AY et al (2017) Intelligent time-adaptive transient stability assessment system. IEEE Trans Power Syst 33(1):1049–1058
21.
Zurück zum Zitat Ji W, Qiu W, Shi Z et al (2020) Stiff-pinn: physics-informed neural network for stiff chemical kinetics. arXiv preprint arXiv:2011.04520 Ji W, Qiu W, Shi Z et al (2020) Stiff-pinn: physics-informed neural network for stiff chemical kinetics. arXiv preprint arXiv:​2011.​04520
22.
Zurück zum Zitat Karniadakis GE, Kevrekidis IG, Lu L et al (2021) Physics-informed machine learning. Nat Rev Phys 3(6):422–440CrossRef Karniadakis GE, Kevrekidis IG, Lu L et al (2021) Physics-informed machine learning. Nat Rev Phys 3(6):422–440CrossRef
25.
Zurück zum Zitat Kundur P (2007) Power system stability. Power system stability and control pp 7–1 Kundur P (2007) Power system stability. Power system stability and control pp 7–1
26.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef
28.
Zurück zum Zitat Li J, Yue M, Zhao Y et al (2020) Machine-learning-based online transient analysis via iterative computation of generator dynamics. In: 2020 IEEE international conference on communications, control, and computing technologies for smart grids (SmartGridComm). IEEE, pp 1–6 Li J, Yue M, Zhao Y et al (2020) Machine-learning-based online transient analysis via iterative computation of generator dynamics. In: 2020 IEEE international conference on communications, control, and computing technologies for smart grids (SmartGridComm). IEEE, pp 1–6
29.
Zurück zum Zitat Lu L, Jin P, Pang G et al (2021) Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nat Mach Intell 3(3):218–229CrossRef Lu L, Jin P, Pang G et al (2021) Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nat Mach Intell 3(3):218–229CrossRef
30.
Zurück zum Zitat Lu L, Meng X, Mao Z et al (2021) Deepxde: a deep learning library for solving differential equations. SIAM Rev 63(1):208–228CrossRefMATH Lu L, Meng X, Mao Z et al (2021) Deepxde: a deep learning library for solving differential equations. SIAM Rev 63(1):208–228CrossRefMATH
31.
Zurück zum Zitat Lu L, Pestourie R, Yao W et al (2021c) Physics-informed neural networks with hard constraints for inverse design. arXiv preprint arXiv:2102.04626 Lu L, Pestourie R, Yao W et al (2021c) Physics-informed neural networks with hard constraints for inverse design. arXiv preprint arXiv:​2102.​04626
32.
Zurück zum Zitat Luenberger DG (1973) Introduction to linear and nonlinear programming, vol 28. Addison-Wesley, ReadingMATH Luenberger DG (1973) Introduction to linear and nonlinear programming, vol 28. Addison-Wesley, ReadingMATH
33.
Zurück zum Zitat Milano F (2010) Power system modelling and scripting. Springer, BerlinCrossRef Milano F (2010) Power system modelling and scripting. Springer, BerlinCrossRef
34.
Zurück zum Zitat Misyris GS, Venzke A, Chatzivasileiadis S (2020) Physics-informed neural networks for power systems. In: 2020 IEEE power & energy society general meeting (PESGM). IEEE, pp 1–5 Misyris GS, Venzke A, Chatzivasileiadis S (2020) Physics-informed neural networks for power systems. In: 2020 IEEE power & energy society general meeting (PESGM). IEEE, pp 1–5
35.
Zurück zum Zitat Moya C, Zhang S, Yue M et al (2022) Deeponet-grid-uq: A trustworthy deep operator framework for predicting the power grid’s post-fault trajectories. arXiv preprint arXiv:2202.07176 Moya C, Zhang S, Yue M et al (2022) Deeponet-grid-uq: A trustworthy deep operator framework for predicting the power grid’s post-fault trajectories. arXiv preprint arXiv:​2202.​07176
36.
Zurück zum Zitat Pai M, Padiyar K, Radhakrishna C (1981) Transient stability analysis of multi-machine ac/dc power systems via energy-function method. IEEE Trans Power Appar Syst 12:5027–5035CrossRef Pai M, Padiyar K, Radhakrishna C (1981) Transient stability analysis of multi-machine ac/dc power systems via energy-function method. IEEE Trans Power Appar Syst 12:5027–5035CrossRef
37.
Zurück zum Zitat Park B, Sun K, Dimitrovski A et al (2021) Examination of semi-analytical solution methods in the coarse operator of parareal algorithm for power system simulation. IEEE Trans Power Syst 36(6):5068–5080CrossRef Park B, Sun K, Dimitrovski A et al (2021) Examination of semi-analytical solution methods in the coarse operator of parareal algorithm for power system simulation. IEEE Trans Power Syst 36(6):5068–5080CrossRef
38.
Zurück zum Zitat Qin T, Wu K, Xiu D (2019) Data driven governing equations approximation using deep neural networks. J Comput Phys 395:620–635CrossRefMATH Qin T, Wu K, Xiu D (2019) Data driven governing equations approximation using deep neural networks. J Comput Phys 395:620–635CrossRefMATH
39.
Zurück zum Zitat Qin T, Chen Z, Jakeman JD et al (2021) Data-driven learning of nonautonomous systems. SIAM J Sci Comput 43(3):A1607–A1624CrossRefMATH Qin T, Chen Z, Jakeman JD et al (2021) Data-driven learning of nonautonomous systems. SIAM J Sci Comput 43(3):A1607–A1624CrossRefMATH
40.
Zurück zum Zitat Raissi M, Perdikaris P, Karniadakis GE (2018) Multistep neural networks for data-driven discovery of nonlinear dynamical systems. arXiv preprint arXiv:1801.01236 Raissi M, Perdikaris P, Karniadakis GE (2018) Multistep neural networks for data-driven discovery of nonlinear dynamical systems. arXiv preprint arXiv:​1801.​01236
41.
Zurück zum Zitat Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707CrossRefMATH Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707CrossRefMATH
42.
Zurück zum Zitat Roche M (1989) Implicit Runge–Kutta methods for differential algebraic equations. SIAM J Numer Anal 26(4):963–975CrossRefMATH Roche M (1989) Implicit Runge–Kutta methods for differential algebraic equations. SIAM J Numer Anal 26(4):963–975CrossRefMATH
43.
Zurück zum Zitat Roth J, Barajas-Solano DA, Stinis P et al (2021) A kinetic Monte Carlo approach for simulating cascading transmission line failure. SIAM J Multiscale Model Simul 19(1) Roth J, Barajas-Solano DA, Stinis P et al (2021) A kinetic Monte Carlo approach for simulating cascading transmission line failure. SIAM J Multiscale Model Simul 19(1)
44.
Zurück zum Zitat Rudin W et al (1976) Principles of mathematical analysis, vol 3. McGraw-Hill, New YorkMATH Rudin W et al (1976) Principles of mathematical analysis, vol 3. McGraw-Hill, New YorkMATH
45.
Zurück zum Zitat Schaeffer H (2017) Learning partial differential equations via data discovery and sparse optimization. Proc R Soc A Math Phys Eng Sci 473(2197):20160446MATH Schaeffer H (2017) Learning partial differential equations via data discovery and sparse optimization. Proc R Soc A Math Phys Eng Sci 473(2197):20160446MATH
46.
Zurück zum Zitat Schainker R, Miller P, Dubbelday W et al (2006) Real-time dynamic security assessment: fast simulation and modeling applied to emergency outage security of the electric grid. IEEE Power Energ Mag 4(2):51–58CrossRef Schainker R, Miller P, Dubbelday W et al (2006) Real-time dynamic security assessment: fast simulation and modeling applied to emergency outage security of the electric grid. IEEE Power Energ Mag 4(2):51–58CrossRef
47.
Zurück zum Zitat Shu J, Xue W, Zheng W (2005) A parallel transient stability simulation for power systems. IEEE Trans Power Syst 20(4):1709–1717CrossRef Shu J, Xue W, Zheng W (2005) A parallel transient stability simulation for power systems. IEEE Trans Power Syst 20(4):1709–1717CrossRef
48.
Zurück zum Zitat Stott B (1979) Power system dynamic response calculations. Proc IEEE 67(2):219–241CrossRef Stott B (1979) Power system dynamic response calculations. Proc IEEE 67(2):219–241CrossRef
49.
Zurück zum Zitat Strogatz SH (2018) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. CRC Press, Boca RatonCrossRefMATH Strogatz SH (2018) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. CRC Press, Boca RatonCrossRefMATH
50.
Zurück zum Zitat Tomim MA, Marti JR, Wang L (2009) Parallel solution of large power system networks using the multi-area thévenin equivalents (mate) algorithm. Int J Electr Power Energy Syst 31(9):497–503CrossRef Tomim MA, Marti JR, Wang L (2009) Parallel solution of large power system networks using the multi-area thévenin equivalents (mate) algorithm. Int J Electr Power Energy Syst 31(9):497–503CrossRef
51.
Zurück zum Zitat Varaiya P, Wu FF, Chen RL (1985) Direct methods for transient stability analysis of power systems: Recent results. Proc IEEE 73(12):1703–1715CrossRef Varaiya P, Wu FF, Chen RL (1985) Direct methods for transient stability analysis of power systems: Recent results. Proc IEEE 73(12):1703–1715CrossRef
52.
Zurück zum Zitat Wang S, Teng Y, Perdikaris P (2020) Understanding and mitigating gradient pathologies in physics-informed neural networks. arXiv preprint arXiv:2001.04536 Wang S, Teng Y, Perdikaris P (2020) Understanding and mitigating gradient pathologies in physics-informed neural networks. arXiv preprint arXiv:​2001.​04536
53.
Zurück zum Zitat Wanner G, Hairer E (1996) Solving ordinary differential equations II, vol 375. Springer Berlin Heidelberg, New YorkMATH Wanner G, Hairer E (1996) Solving ordinary differential equations II, vol 375. Springer Berlin Heidelberg, New YorkMATH
54.
Zurück zum Zitat Yazdani A, Lu L, Raissi M et al (2020) Systems biology informed deep learning for inferring parameters and hidden dynamics. PLoS Comput Biol 16(11):e1007575CrossRef Yazdani A, Lu L, Raissi M et al (2020) Systems biology informed deep learning for inferring parameters and hidden dynamics. PLoS Comput Biol 16(11):e1007575CrossRef
55.
Zurück zum Zitat Zhao T, Yue M, Wang J (2022) Structure-informed graph learning of networked dependencies for online prediction of power system transient dynamics. IEEE Trans Power Syst Zhao T, Yue M, Wang J (2022) Structure-informed graph learning of networked dependencies for online prediction of power system transient dynamics. IEEE Trans Power Syst
56.
Zurück zum Zitat Zheng H, DeMarco CL (2010) A bi-stable branch model for energy-based cascading failure analysis in power systems. In: North American power symposium 2010. IEEE, pp 1–7 Zheng H, DeMarco CL (2010) A bi-stable branch model for energy-based cascading failure analysis in power systems. In: North American power symposium 2010. IEEE, pp 1–7
57.
Zurück zum Zitat Zheng Y, Hu C, Lin G et al (2022) Glassoformer: a query-sparse transformer for post-fault power grid voltage prediction. In: ICASSP 2022–2022 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 3968–3972 Zheng Y, Hu C, Lin G et al (2022) Glassoformer: a query-sparse transformer for post-fault power grid voltage prediction. In: ICASSP 2022–2022 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 3968–3972
58.
Zurück zum Zitat Zhou H, Zhang S, Peng J et al (2020) Informer: beyond efficient transformer for long sequence time-series forecasting. arXiv preprint arXiv:2012.07436 Zhou H, Zhang S, Peng J et al (2020) Informer: beyond efficient transformer for long sequence time-series forecasting. arXiv preprint arXiv:​2012.​07436
59.
Zurück zum Zitat Zhu L, Hill DJ, Lu C (2019) Hierarchical deep learning machine for power system online transient stability prediction. IEEE Trans Power Syst 35(3):2399–2411CrossRef Zhu L, Hill DJ, Lu C (2019) Hierarchical deep learning machine for power system online transient stability prediction. IEEE Trans Power Syst 35(3):2399–2411CrossRef
Metadaten
Titel
DAE-PINN: a physics-informed neural network model for simulating differential algebraic equations with application to power networks
verfasst von
Christian Moya
Guang Lin
Publikationsdatum
15.10.2022
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 5/2023
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-022-07886-y

Weitere Artikel der Ausgabe 5/2023

Neural Computing and Applications 5/2023 Zur Ausgabe

Premium Partner