Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

10.01.2019

Daily Runoff Forecasting Using a Hybrid Model Based on Variational Mode Decomposition and Deep Neural Networks

Zeitschrift:
Water Resources Management
Autoren:
Xinxin He, Jungang Luo, Ganggang Zuo, Jiancang Xie
Wichtige Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Accurate and reliable runoff forecasting plays an increasingly important role in the optimal management of water resources. To improve the prediction accuracy, a hybrid model based on variational mode decomposition (VMD) and deep neural networks (DNN), referred to as VMD-DNN, is proposed to perform daily runoff forecasting. First, VMD is applied to decompose the original runoff series into multiple intrinsic mode functions (IMFs), each with a relatively local frequency range. Second, predicted models of decomposed IMFs are established by learning the deep feature values of the DNN. Finally, the ensemble forecasting result is formulated by summing the prediction sub-results of the modelled IMFs. The proposed model is demonstrated using daily runoff series data from the Zhangjiashan Hydrological Station in Jing River, China. To fully illustrate the feasibility and superiority of this approach, the VMD-DNN hybrid model was compared with EMD-DNN, EEMD-DNN, and multi-scale feature extraction -based VMD-DNN, EMD-DNN and EEMD-DNN. The results reveal that the proposed hybrid VMD-DNN model produces the best performance based on the Nash-Sutcliffe efficiency (NSE = 0.95), root mean square error (RMSE = 9.92) and mean absolute error (MAE = 3.82) values. Thus the proposed hybrid VMD-DNN model is a promising new method for daily runoff forecasting.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​​​​​​​​

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Systemische Notwendigkeit zur Weiterentwicklung von Hybridnetzen

Die Entwicklung des mitteleuropäischen Energiesystems und insbesondere die Weiterentwicklung der Energieinfrastruktur sind konfrontiert mit einer stetig steigenden Diversität an Herausforderungen, aber auch mit einer zunehmenden Komplexität in den Lösungsoptionen. Vor diesem Hintergrund steht die Weiterentwicklung von Hybridnetzen symbolisch für das ganze sich in einer Umbruchsphase befindliche Energiesystem: denn der Notwendigkeit einer Schaffung und Bildung der Hybridnetze aus systemischer und volkswirtschaftlicher Perspektive steht sozusagen eine Komplexitätsfalle gegenüber, mit der die Branche in der Vergangenheit in dieser Intensität nicht konfrontiert war. Jetzt gratis downloaden!

Bildnachweise