Skip to main content
Erschienen in: Water Resources Management 11/2022

04.08.2022

Dam-Break Flow on Mobile Bed Through an Idealized City: Numerical Study

verfasst von: Alibek Issakhov, Aliya Borsikbayeva, Assylbek Issakhov

Erschienen in: Water Resources Management | Ausgabe 11/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a numerical simulation of a three-phase flow (water, air, and mud) formed during a dam break. For the connection between all phases, the mathematical model was modified to take into account the non-Newtonian and Newtonian fluids. The equations in the mathematical model are discretized by the finite volume method and the relationship between all phases is achieved using the volume of fluid (VOF) method. Modified Navier–Stokes equations for accounting for non-Newtonian and Newtonian fluids are solved by the Pressure-Implicit with Splitting of Operators (PISO) numerical algorithm. To validate the mathematical model and numerical algorithm, the paper demonstrates a comparative analysis of the results with the laboratory experiment. The model tested in this way has confirmed its reliability, accuracy and reasonableness. Additionally, a three-dimensional numerical simulation of the water flow movement in combination with a sedimentary layer in a narrowing channel was considered. A rough estimate of the mud flow behavior in relation to the urbanized area located at the end of the channel is given. When analyzing the numerical results, it can be concluded that an increase in the height of the mud layer leads to a deceleration of the moving flow, which can subsequently be used for the timely evacuation of the population. It should be noticed that the analysis of the comparative graphs showed the deceleration of the water flow by more than 0.2 s for a moving layer depth of 0.025 m and when using a mixed arrangement of the sediment. And also from the obtained results, we can note at least two times decrease in the maximum pressure value that in the presence of sediments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aureli F, Mignosa P, Tomirotti M (2000) Numerical simulation and experimental verification of Dam-Break flows with shocks. J Hydraul Res 38(3):197–206CrossRef Aureli F, Mignosa P, Tomirotti M (2000) Numerical simulation and experimental verification of Dam-Break flows with shocks. J Hydraul Res 38(3):197–206CrossRef
Zurück zum Zitat Bell SW, Elliot RC, Chaudhry MH (1992) Experimental results of two dimensional dam-break flows. J Hydraul Res 30(2):225–252CrossRef Bell SW, Elliot RC, Chaudhry MH (1992) Experimental results of two dimensional dam-break flows. J Hydraul Res 30(2):225–252CrossRef
Zurück zum Zitat Bahmanpouri F, Daliri M, Khoshkonesh A, Namin MM, Buccino M (2021) Bed compaction effect on dam break flow over erodible bed; experimental and numerical modeling. J Hydrol 594:125645CrossRef Bahmanpouri F, Daliri M, Khoshkonesh A, Namin MM, Buccino M (2021) Bed compaction effect on dam break flow over erodible bed; experimental and numerical modeling. J Hydrol 594:125645CrossRef
Zurück zum Zitat Barati R, Neyshabouri SAAS, Ahmadi G (2018) Issues in Eulerian-Lagrangian modeling of sediment transport under saltation regime. Int J Sedim Res 33(4):441–461CrossRef Barati R, Neyshabouri SAAS, Ahmadi G (2018) Issues in Eulerian-Lagrangian modeling of sediment transport under saltation regime. Int J Sedim Res 33(4):441–461CrossRef
Zurück zum Zitat Bellos CV, Soulis V, Sakkas JG (1992) Experimental investigation of two-dimensional dam-break induced flows. J Hydraul Res 30(1):47–63CrossRef Bellos CV, Soulis V, Sakkas JG (1992) Experimental investigation of two-dimensional dam-break induced flows. J Hydraul Res 30(1):47–63CrossRef
Zurück zum Zitat Crespo AJC, Domínguez JM, Rogers BD, Gómez-Gesteira M, Longshaw S, Canelas R, García-Feal O (2015) DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH). Comput Phys Commun 187:204–216CrossRef Crespo AJC, Domínguez JM, Rogers BD, Gómez-Gesteira M, Longshaw S, Canelas R, García-Feal O (2015) DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH). Comput Phys Commun 187:204–216CrossRef
Zurück zum Zitat Castro Díaz MJ, Fernández-Nieto ED, Ferreiro AM (2008) Sediment transport models in Shallow Water equations and numerical approach by high order finite volume methods. Comput Fluids 37(3):299–316CrossRef Castro Díaz MJ, Fernández-Nieto ED, Ferreiro AM (2008) Sediment transport models in Shallow Water equations and numerical approach by high order finite volume methods. Comput Fluids 37(3):299–316CrossRef
Zurück zum Zitat Demir A, Dincer AE, Bozkus Z, Tijsseling AS (2019) Numerical and experimental investigation of damping in a dam-break problem with fluid-structure interaction. Journal of Zhejiang University-SCIENCE A 20(4):258–271CrossRef Demir A, Dincer AE, Bozkus Z, Tijsseling AS (2019) Numerical and experimental investigation of damping in a dam-break problem with fluid-structure interaction. Journal of Zhejiang University-SCIENCE A 20(4):258–271CrossRef
Zurück zum Zitat Feizi Khankandi A, Tahershamsi A, Soares-Frazão S (2012) Experimental investigation of reservoir geometry effect on dam-break flow. J Hydraul Res 50(4):376–387CrossRef Feizi Khankandi A, Tahershamsi A, Soares-Frazão S (2012) Experimental investigation of reservoir geometry effect on dam-break flow. J Hydraul Res 50(4):376–387CrossRef
Zurück zum Zitat Formentin SM, Palma G, Contestabile P, Vicinanza D, Zanuttigh B (2016) 2DV RANS-VOF numerical modeling of a multi-functional harbour structure. Coast Eng Proc 1:3 Formentin SM, Palma G, Contestabile P, Vicinanza D, Zanuttigh B (2016) 2DV RANS-VOF numerical modeling of a multi-functional harbour structure. Coast Eng Proc 1:3
Zurück zum Zitat Goutiere L, Soares-Frazão S, Zech Y (2011) Dam-break flow on mobile bed in abruptly widening channel: experimental data. J Hydraul Res 49(3):367–371CrossRef Goutiere L, Soares-Frazão S, Zech Y (2011) Dam-break flow on mobile bed in abruptly widening channel: experimental data. J Hydraul Res 49(3):367–371CrossRef
Zurück zum Zitat Gotoh H, Fredso/e J (2001) Lagrangian Two-Phase Flow Model of the Settling Behavior of Fine Sediment Dumped into Water. Coastal Eng 2000 Gotoh H, Fredso/e J (2001) Lagrangian Two-Phase Flow Model of the Settling Behavior of Fine Sediment Dumped into Water. Coastal Eng 2000
Zurück zum Zitat Ghaeini-Hessaroeyeh M, Namin MM, Fadaei-Kermani E (2021) 2-D Dam-Break Flow Modeling Based on Weighted Average Flux Method. Iranian J Sci Technol Transact Civil Eng 1–11 Ghaeini-Hessaroeyeh M, Namin MM, Fadaei-Kermani E (2021) 2-D Dam-Break Flow Modeling Based on Weighted Average Flux Method. Iranian J Sci Technol Transact Civil Eng 1–11
Zurück zum Zitat Gerlach D, Tomar G, Biswas G, Durst F (2006) Comparison of volume-of-fluid methods for surface tension-dominant two-phase flows. Int J Heat Mass Transf 49(3–4):740–754CrossRef Gerlach D, Tomar G, Biswas G, Durst F (2006) Comparison of volume-of-fluid methods for surface tension-dominant two-phase flows. Int J Heat Mass Transf 49(3–4):740–754CrossRef
Zurück zum Zitat Gregoretti C, Maltauro A, Lanzoni S (2010) Laboratory experiments on the failure of coarse homogeneous sediment natural dams on a sloping bed. J Hydraul Eng 136(11):868–879CrossRef Gregoretti C, Maltauro A, Lanzoni S (2010) Laboratory experiments on the failure of coarse homogeneous sediment natural dams on a sloping bed. J Hydraul Eng 136(11):868–879CrossRef
Zurück zum Zitat Hosseini K, Omidvar P, Kheirkhahan M, Farzin S (2019) Smoothed particle hydrodynamics for the interaction of Newtonian and non-Newtonian fluids using the μ(I) model. Powder Technol Hosseini K, Omidvar P, Kheirkhahan M, Farzin S (2019) Smoothed particle hydrodynamics for the interaction of Newtonian and non-Newtonian fluids using the μ(I) model. Powder Technol
Zurück zum Zitat He Y, Bayly AE, Hassanpour A, Muller F, Wu K, Yang D (2018) A GPU-based coupled SPH-DEM method for particle-fluid flow with free surfaces. Powder Technol 338:548–562CrossRef He Y, Bayly AE, Hassanpour A, Muller F, Wu K, Yang D (2018) A GPU-based coupled SPH-DEM method for particle-fluid flow with free surfaces. Powder Technol 338:548–562CrossRef
Zurück zum Zitat Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225CrossRef Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225CrossRef
Zurück zum Zitat Hu H, Zhang J, Li T, Yang J (2020) A simplified mathematical model for the dam-breach hydrograph for three reservoir geometries following a sudden full dam break. Nat Hazards Hu H, Zhang J, Li T, Yang J (2020) A simplified mathematical model for the dam-breach hydrograph for three reservoir geometries following a sudden full dam break. Nat Hazards
Zurück zum Zitat Issakhov A, Omarova P (2021) Modeling and analysis of the effects of barrier height on automobiles emission dispersion. J Clean Prod 296:126450CrossRef Issakhov A, Omarova P (2021) Modeling and analysis of the effects of barrier height on automobiles emission dispersion. J Clean Prod 296:126450CrossRef
Zurück zum Zitat Issakhov A, Imanberdiyeva M (2019) Numerical simulation of the movement of water surface of dam break flow by VOF methods for various obstacles. Int J Heat Mass Transf 136:1030–1051CrossRef Issakhov A, Imanberdiyeva M (2019) Numerical simulation of the movement of water surface of dam break flow by VOF methods for various obstacles. Int J Heat Mass Transf 136:1030–1051CrossRef
Zurück zum Zitat Issakhov A, Zhandaulet Y, Nogaeva A (2018) Numerical simulation of dam break flow for various forms of the obstacle by VOF method. Int J Multiph Flow 109:191–206CrossRef Issakhov A, Zhandaulet Y, Nogaeva A (2018) Numerical simulation of dam break flow for various forms of the obstacle by VOF method. Int J Multiph Flow 109:191–206CrossRef
Zurück zum Zitat Jang DS, Jetli R, Acharya S (1986) Comparison of the PISO, SIMPLER, and SIMPLEC algorithms for the treatment of the pressure-velocity coupling in steady flow problems. Numerical Heat Transfer 10:209–228CrossRef Jang DS, Jetli R, Acharya S (1986) Comparison of the PISO, SIMPLER, and SIMPLEC algorithms for the treatment of the pressure-velocity coupling in steady flow problems. Numerical Heat Transfer 10:209–228CrossRef
Zurück zum Zitat Kocaman S, Güzel H, Evangelista S, Ozmen-Cagatay H, Viccione G (2020) Experimental and Numerical Analysis of a Dam-Break Flow through Different Contraction Geometries of the Channel. Water 12(4):1124CrossRef Kocaman S, Güzel H, Evangelista S, Ozmen-Cagatay H, Viccione G (2020) Experimental and Numerical Analysis of a Dam-Break Flow through Different Contraction Geometries of the Channel. Water 12(4):1124CrossRef
Zurück zum Zitat Kocaman S, Dal K (2020) A New Experimental Study and SPH Comparison for the Sequential Dam-Break Problem. Journal of Marine Science and Engineering 8(11):905CrossRef Kocaman S, Dal K (2020) A New Experimental Study and SPH Comparison for the Sequential Dam-Break Problem. Journal of Marine Science and Engineering 8(11):905CrossRef
Zurück zum Zitat Kamra MM, Al Salami J, Sueyoshi M, Hu C (2019) Experimental study of the interaction of dambreak with a vertical cylinder. J Fluids Struct 86:185–199CrossRef Kamra MM, Al Salami J, Sueyoshi M, Hu C (2019) Experimental study of the interaction of dambreak with a vertical cylinder. J Fluids Struct 86:185–199CrossRef
Zurück zum Zitat Koshizuka S, Oka Y, Tamako H (1995) A particle method for calculating splashing of incompressible viscous fluid. Proc Int Conf Math Comput Reactor Phys Environ Anal 1514–1521 Koshizuka S, Oka Y, Tamako H (1995) A particle method for calculating splashing of incompressible viscous fluid. Proc Int Conf Math Comput Reactor Phys Environ Anal 1514–1521
Zurück zum Zitat Khosravi K, Chegini AHN, Cooper JR, Mao L, Roshan MH, Shahedi K, Binns AD (2021) A laboratory investigation of bed-load transport of gravel sediments under dam break flow. Int J Sediment Res Khosravi K, Chegini AHN, Cooper JR, Mao L, Roshan MH, Shahedi K, Binns AD (2021) A laboratory investigation of bed-load transport of gravel sediments under dam break flow. Int J Sediment Res
Zurück zum Zitat Kamra MM, Mohd N, Liu C, Sueyoshi M, Hu C (2018) Numerical and experimental investigation of three-dimensionality in the dam-break flow against a vertical wall. J Hydrodyn 30(4):682–693CrossRef Kamra MM, Mohd N, Liu C, Sueyoshi M, Hu C (2018) Numerical and experimental investigation of three-dimensionality in the dam-break flow against a vertical wall. J Hydrodyn 30(4):682–693CrossRef
Zurück zum Zitat Luo J, Xu W, Tian Z, Chen H (2017) Numerical simulation of cascaded dam-break flow in downstream reservoir. Proc Inst Civil Eng - Water Manage 1–13 Luo J, Xu W, Tian Z, Chen H (2017) Numerical simulation of cascaded dam-break flow in downstream reservoir. Proc Inst Civil Eng - Water Manage 1–13
Zurück zum Zitat Li YL, Ma CP, Zhang XH, Wang KP, Jiang DP (2020) Three-dimensional numerical simulation of violent free surface deformation based on a coupled level set and volume of fluid method. Ocean Eng 210:106794CrossRef Li YL, Ma CP, Zhang XH, Wang KP, Jiang DP (2020) Three-dimensional numerical simulation of violent free surface deformation based on a coupled level set and volume of fluid method. Ocean Eng 210:106794CrossRef
Zurück zum Zitat Mirauda D, Albano R, Sole A, Adamowski J (2020) Smoothed Particle Hydrodynamics Modeling with Advanced Boundary Conditions for Two-Dimensional Dam-Break Floods. Water 12(4):1142CrossRef Mirauda D, Albano R, Sole A, Adamowski J (2020) Smoothed Particle Hydrodynamics Modeling with Advanced Boundary Conditions for Two-Dimensional Dam-Break Floods. Water 12(4):1142CrossRef
Zurück zum Zitat Miller S, Chaudhry MH (1989) Dam-break flows in curved channel. J Hydraul Eng – ASCE 115 (11):1465–1478 Miller S, Chaudhry MH (1989) Dam-break flows in curved channel. J Hydraul Eng – ASCE 115 (11):1465–1478
Zurück zum Zitat Memarzadeh R, Barani G, Ghaeini-Hessaroeyeh M (2018) Numerical modeling of sediment transport based on unsteady and steady flows by incompressible smoothed particle hydrodynamics method. J Hydrodynam Memarzadeh R, Barani G, Ghaeini-Hessaroeyeh M (2018) Numerical modeling of sediment transport based on unsteady and steady flows by incompressible smoothed particle hydrodynamics method. J Hydrodynam
Zurück zum Zitat Marsooli R, Wu W (2014) 3-D finite-volume model of dam-break flow over uneven beds based on VOF method. Adv Water Resour 70:104–117CrossRef Marsooli R, Wu W (2014) 3-D finite-volume model of dam-break flow over uneven beds based on VOF method. Adv Water Resour 70:104–117CrossRef
Zurück zum Zitat Munoz DH, Constantinescu G (2020) 3-D dam break flow simulations in simplified and complex domains. Adv Water Resour 103510 Munoz DH, Constantinescu G (2020) 3-D dam break flow simulations in simplified and complex domains. Adv Water Resour 103510
Zurück zum Zitat Monaghan JJ (2012) Smoothed Particle Hydrodynamics and Its Diverse Applications. Annu Rev Fluid Mech 44:323–346CrossRef Monaghan JJ (2012) Smoothed Particle Hydrodynamics and Its Diverse Applications. Annu Rev Fluid Mech 44:323–346CrossRef
Zurück zum Zitat Oguzhan S, Aksoy AO (2020) Experimental investigation of the effect of vegetation on dam break flood waves. Journal of Hydrology and Hydromechanics 68(3):231–241CrossRef Oguzhan S, Aksoy AO (2020) Experimental investigation of the effect of vegetation on dam break flood waves. Journal of Hydrology and Hydromechanics 68(3):231–241CrossRef
Zurück zum Zitat Ozmen-Cagatay H, Kocaman S, Guzel H (2014) Investigation of dam-break flood waves in a dry channel with a hump. Journal of Hydro-Environment Research 8(3):304–315CrossRef Ozmen-Cagatay H, Kocaman S, Guzel H (2014) Investigation of dam-break flood waves in a dry channel with a hump. Journal of Hydro-Environment Research 8(3):304–315CrossRef
Zurück zum Zitat Ozmen-Cagatay H, Kocaman S (2012) Investigation of Dam-Break Flow Over Abruptly Contracting Channel With Trapezoidal-Shaped Lateral Obstacles. J Fluids Eng 134(8):081204CrossRef Ozmen-Cagatay H, Kocaman S (2012) Investigation of Dam-Break Flow Over Abruptly Contracting Channel With Trapezoidal-Shaped Lateral Obstacles. J Fluids Eng 134(8):081204CrossRef
Zurück zum Zitat Pilliod JE, Puckett EG (2004) Second-order accurate volume-of-fluid algorithms for tracking material interfaces. J Comput Phys 199(2) Pilliod JE, Puckett EG (2004) Second-order accurate volume-of-fluid algorithms for tracking material interfaces. J Comput Phys 199(2)
Zurück zum Zitat Rowan T, Seaid M (2020) Two-dimensional numerical modelling of shallow water flows over multilayer movable beds. Appl Math Model 474–497 Rowan T, Seaid M (2020) Two-dimensional numerical modelling of shallow water flows over multilayer movable beds. Appl Math Model 474–497
Zurück zum Zitat Razavitoosi SL, Ayyoubzadeh SA, Valizadeh A (2014) Two-phase SPH modelling of waves caused by dam break over a movable bed. Int J Sedim Res 29(3):344–356CrossRef Razavitoosi SL, Ayyoubzadeh SA, Valizadeh A (2014) Two-phase SPH modelling of waves caused by dam break over a movable bed. Int J Sedim Res 29(3):344–356CrossRef
Zurück zum Zitat Robinson M, Ramaioli M, Luding S (2014) Fluid–particle flow simulations using two-way-coupled mesoscale SPH–DEM and validation. Int J Multiph Flow 59:121–134CrossRef Robinson M, Ramaioli M, Luding S (2014) Fluid–particle flow simulations using two-way-coupled mesoscale SPH–DEM and validation. Int J Multiph Flow 59:121–134CrossRef
Zurück zum Zitat Shahheydari H, Nodoshan EJ, Barati R, Moghadam MA (2015) Discharge coefficient and energy dissipation over stepped spillway under skimming flow regime. KSCE J Civ Eng 19(4):1174–1182CrossRef Shahheydari H, Nodoshan EJ, Barati R, Moghadam MA (2015) Discharge coefficient and energy dissipation over stepped spillway under skimming flow regime. KSCE J Civ Eng 19(4):1174–1182CrossRef
Zurück zum Zitat Spinewine B, Zech Y (2007) Small-scale laboratory dam-break waves on movable beds. J Hydraul Res 45(sup1):73–86CrossRef Spinewine B, Zech Y (2007) Small-scale laboratory dam-break waves on movable beds. J Hydraul Res 45(sup1):73–86CrossRef
Zurück zum Zitat Soares-Frazão S, Canelas R, Cao Z, Cea L, Chaudhry HM, Die Moran A, Zech Y (2012) Dam-break flows over mobile beds: experiments and benchmark tests for numerical models. J Hydraul Res 50(4):364–375CrossRef Soares-Frazão S, Canelas R, Cao Z, Cea L, Chaudhry HM, Die Moran A, Zech Y (2012) Dam-break flows over mobile beds: experiments and benchmark tests for numerical models. J Hydraul Res 50(4):364–375CrossRef
Zurück zum Zitat Soares-Frazão S, Zech Y (2008) Dam-break flow through an idealised city. J Hydraul Res 46(5):648–658CrossRef Soares-Frazão S, Zech Y (2008) Dam-break flow through an idealised city. J Hydraul Res 46(5):648–658CrossRef
Zurück zum Zitat Shakibaeinia A, Jin Y-C (2011) A mesh-free particle model for simulation of mobile-bed dam break. Adv Water Resour 34(6):794–807CrossRef Shakibaeinia A, Jin Y-C (2011) A mesh-free particle model for simulation of mobile-bed dam break. Adv Water Resour 34(6):794–807CrossRef
Zurück zum Zitat Tajnesaie M, Jafari Nodoushan E, Barati R, Azhdary Moghadam M (2020) Performance comparison of four turbulence models for modeling of secondary flow cells in simple trapezoidal channels. ISH Journal of Hydraulic Engineering 26(2):187–197CrossRef Tajnesaie M, Jafari Nodoushan E, Barati R, Azhdary Moghadam M (2020) Performance comparison of four turbulence models for modeling of secondary flow cells in simple trapezoidal channels. ISH Journal of Hydraulic Engineering 26(2):187–197CrossRef
Zurück zum Zitat Van Emelen S, Zech Y, Soares-Frazão S (2014) Impact of sediment transport formulations on breaching modelling. J Hydraul Res 53(1):60–72CrossRef Van Emelen S, Zech Y, Soares-Frazão S (2014) Impact of sediment transport formulations on breaching modelling. J Hydraul Res 53(1):60–72CrossRef
Zurück zum Zitat Vashahi F, Dafsari RA, Rezaei S, Lee JK, Baek BJ (2019) Assessment of steady VOF RANS turbulence models in rendering the internal flow structure of pressure swirl nozzles. Fluid Dyn Res 51 Vashahi F, Dafsari RA, Rezaei S, Lee JK, Baek BJ (2019) Assessment of steady VOF RANS turbulence models in rendering the internal flow structure of pressure swirl nozzles. Fluid Dyn Res 51
Zurück zum Zitat Wu H, Nian T, Chen G, Zhao W, Li D (2020) Laboratory-scale investigation of the 3-D geometry of landslide dams in a U-shaped valley. Eng Geol 105428 Wu H, Nian T, Chen G, Zhao W, Li D (2020) Laboratory-scale investigation of the 3-D geometry of landslide dams in a U-shaped valley. Eng Geol 105428
Zurück zum Zitat Wang B, Liu WJ, Wang W, Zhang JM, Chen YL, Peng Y, Liu X, Yang S (2020) Experimental and numerical investigations of similarity for dam-break flows on wet bed. J Hydrol 124598 Wang B, Liu WJ, Wang W, Zhang JM, Chen YL, Peng Y, Liu X, Yang S (2020) Experimental and numerical investigations of similarity for dam-break flows on wet bed. J Hydrol 124598
Zurück zum Zitat Xia J, Lin B, Falconer RA, Wang G (2010) Modelling dam-break flows over mobile beds using a 2D coupled approach. Adv Water Resour 33(2):171–183CrossRef Xia J, Lin B, Falconer RA, Wang G (2010) Modelling dam-break flows over mobile beds using a 2D coupled approach. Adv Water Resour 33(2):171–183CrossRef
Zurück zum Zitat Yang Q, Guan M, Peng Y, Chen H (2020a) Numerical investigation of flash flood dynamics due to cascading failures of natural landslide dams. Eng Geol 105765 Yang Q, Guan M, Peng Y, Chen H (2020a) Numerical investigation of flash flood dynamics due to cascading failures of natural landslide dams. Eng Geol 105765
Zurück zum Zitat Yang S, Wang B, Guo Y, Zhang J, Chen Y (2020b) Gate-Opening Criterion for Generating Dam-Break Flow in Non-Rectangular Wet Bed Channels. Energies 13(23):6280CrossRef Yang S, Wang B, Guo Y, Zhang J, Chen Y (2020b) Gate-Opening Criterion for Generating Dam-Break Flow in Non-Rectangular Wet Bed Channels. Energies 13(23):6280CrossRef
Zurück zum Zitat Zhang X, Tian X, Guo X, Li X, Xiao L (2020) Bottom step enlarging horizontal momentum flux of dam break flow. Ocean Eng 214:107729CrossRef Zhang X, Tian X, Guo X, Li X, Xiao L (2020) Bottom step enlarging horizontal momentum flux of dam break flow. Ocean Eng 214:107729CrossRef
Zurück zum Zitat Zhang T, Peng L, Feng P (2018) Evaluation of a 3D unstructured-mesh finite element model for dam-break floods. Comput Fluids 160:64–77CrossRef Zhang T, Peng L, Feng P (2018) Evaluation of a 3D unstructured-mesh finite element model for dam-break floods. Comput Fluids 160:64–77CrossRef
Metadaten
Titel
Dam-Break Flow on Mobile Bed Through an Idealized City: Numerical Study
verfasst von
Alibek Issakhov
Aliya Borsikbayeva
Assylbek Issakhov
Publikationsdatum
04.08.2022
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 11/2022
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-022-03253-7

Weitere Artikel der Ausgabe 11/2022

Water Resources Management 11/2022 Zur Ausgabe