Skip to main content
Erschienen in: Neural Computing and Applications 3-4/2014

01.03.2014 | Original Article

Damage detection in Timoshenko beam structures by multilayer perceptron and radial basis function networks

verfasst von: Kamil Aydin, Ozgur Kisi

Erschienen in: Neural Computing and Applications | Ausgabe 3-4/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study investigates the efficiency of artificial neural networks (ANNs) in health monitoring of pristine and damaged beam-like structures. Beam modeling is based on Timoshenko theory. Two commonly used network models, multilayer perceptron (MLP) and radial basis neural network (RBNN), are used. Beam material and geometrical properties, beam end conditions and dynamically obtained data are used as input to the neural networks. The combinations of these parameters yield umpteenth input data. Therefore, to examine the effectiveness of ANNs, the frequency of intact beams is first tried to be determined by the network models, given the material and geometrical characteristics of beam elements and support conditions. The methodology to compute the vibrational data utilized in training the networks is provided. Showing the robustness of network models, the second stage of the study is carried out. At this stage, the crack parameters (e.g. the location and severity of crack) are estimated by the ANNs using the beam properties, beam end conditions and vibrational data, which consist of natural frequencies and mode shape rotation values. Despite the multiplexed input data, no data reduction schemes or multistage computations are executed in training and validation of neural network models. As a result of analysis runs, the optimal MLP and RBNN models are determined. Comparison of these models shows that the optimal RBNN algorithm performs better. The effectiveness of optimal ANN models in the presence of noise is also presented. As a conclusion, the trained network can be used as a diagnosis method in structural health monitoring of beam-like structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Doebling SW, Farrar CR, Prime MB, Shevitz DW (1996) Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. Los Alamos National Laboratory report (LA-13070-MS) Doebling SW, Farrar CR, Prime MB, Shevitz DW (1996) Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. Los Alamos National Laboratory report (LA-13070-MS)
2.
Zurück zum Zitat Fan W, Qiao P (2011) Vibration-based damage identification methods: a review and comparative study. Struct Health Monit 10(1):83–111CrossRef Fan W, Qiao P (2011) Vibration-based damage identification methods: a review and comparative study. Struct Health Monit 10(1):83–111CrossRef
3.
Zurück zum Zitat Nazarko P, Ziemianski L (2008) Neural networks applied to damage evaluation in experimental tests. In: 8th world congress on computational mechanics (WCCM8), Venice, Italy Nazarko P, Ziemianski L (2008) Neural networks applied to damage evaluation in experimental tests. In: 8th world congress on computational mechanics (WCCM8), Venice, Italy
4.
Zurück zum Zitat Sohn H, Farrar C, Hunter N, Worden K (2003) A review of structural health monitoring literature: 1996–2001. Los Alamos National Laboratory report (LA-13976-MS) Sohn H, Farrar C, Hunter N, Worden K (2003) A review of structural health monitoring literature: 1996–2001. Los Alamos National Laboratory report (LA-13976-MS)
5.
Zurück zum Zitat Carden EP, Fanning P (2004) Vibration based condition monitoring: a review. Struct Health Monit 3(4):355–377CrossRef Carden EP, Fanning P (2004) Vibration based condition monitoring: a review. Struct Health Monit 3(4):355–377CrossRef
6.
Zurück zum Zitat Kasper DG, Swanson DC, Reichard KM (2008) Higher-frequency wave number shift and frequency shift in a cracked vibrating beam. J Sound Vib 312(1–2):1–18CrossRef Kasper DG, Swanson DC, Reichard KM (2008) Higher-frequency wave number shift and frequency shift in a cracked vibrating beam. J Sound Vib 312(1–2):1–18CrossRef
7.
Zurück zum Zitat Salawu OS (1997) Detection of structural damage through changes in frequency: a review. Eng Struct 19:718–723CrossRef Salawu OS (1997) Detection of structural damage through changes in frequency: a review. Eng Struct 19:718–723CrossRef
8.
Zurück zum Zitat Nandwana BP, Maiti SK (1997) Detection of the location and size of a crack in stepped cantilever beams based on measurements of natural frequencies. J Sound Vib 203(3):435–446CrossRef Nandwana BP, Maiti SK (1997) Detection of the location and size of a crack in stepped cantilever beams based on measurements of natural frequencies. J Sound Vib 203(3):435–446CrossRef
9.
Zurück zum Zitat Chinchalkar S (2001) Determination of crack location in beams using natural frequencies. J Sound Vib 247:417–429CrossRef Chinchalkar S (2001) Determination of crack location in beams using natural frequencies. J Sound Vib 247:417–429CrossRef
10.
Zurück zum Zitat Farrar CR, James GH (1997) System identification from ambient vibration measurements on a bridge. J Sound Vib 205:1–18CrossRef Farrar CR, James GH (1997) System identification from ambient vibration measurements on a bridge. J Sound Vib 205:1–18CrossRef
11.
Zurück zum Zitat Shi ZY, Law SS, Zhang LM (2000) Damage localization by directly using incomplete mode shapes. J Eng Mech ASCE 126(6):656–660CrossRef Shi ZY, Law SS, Zhang LM (2000) Damage localization by directly using incomplete mode shapes. J Eng Mech ASCE 126(6):656–660CrossRef
12.
Zurück zum Zitat Hu CS, Afzal MT (2006) A statistical algorithm for comparing mode shapes of vibration testing before and after damage in timbers. J Wood Sci 52:348–352CrossRef Hu CS, Afzal MT (2006) A statistical algorithm for comparing mode shapes of vibration testing before and after damage in timbers. J Wood Sci 52:348–352CrossRef
13.
Zurück zum Zitat Ren WX, De Roeck G (2002) Structural damage identification using modal data I: simulation verification. J Struct Eng ASCE 128:87–95CrossRef Ren WX, De Roeck G (2002) Structural damage identification using modal data I: simulation verification. J Struct Eng ASCE 128:87–95CrossRef
14.
Zurück zum Zitat Ren WX, De Roeck G (2002) Structural damage identification using modal data II: test verification. J Struct Eng ASCE 128:96–104CrossRef Ren WX, De Roeck G (2002) Structural damage identification using modal data II: test verification. J Struct Eng ASCE 128:96–104CrossRef
15.
Zurück zum Zitat Pandey AK, Biswas M, Samman MM (1991) Damage detection from changes in curvature mode shapes. J Sound Vib 145(2):321–332CrossRef Pandey AK, Biswas M, Samman MM (1991) Damage detection from changes in curvature mode shapes. J Sound Vib 145(2):321–332CrossRef
16.
Zurück zum Zitat Abdel Wahab MM, De Roeck G (1999) Damage detection in bridges using modal curvatures: application to a real damage scenario. J Sound Vib 226(2):217–235CrossRef Abdel Wahab MM, De Roeck G (1999) Damage detection in bridges using modal curvatures: application to a real damage scenario. J Sound Vib 226(2):217–235CrossRef
17.
Zurück zum Zitat Stubbs N, Kim JT (1996) Damage localization in structures without baseline modal parameters. AIAA 34:1644–1649CrossRefMATH Stubbs N, Kim JT (1996) Damage localization in structures without baseline modal parameters. AIAA 34:1644–1649CrossRefMATH
18.
Zurück zum Zitat Law SS, Shi ZY, Zhang LM (1998) Structural damage detection from incomplete and noisy modal test data. J Eng Mech ASCE 124:1280–1288CrossRef Law SS, Shi ZY, Zhang LM (1998) Structural damage detection from incomplete and noisy modal test data. J Eng Mech ASCE 124:1280–1288CrossRef
19.
Zurück zum Zitat Pandey AK, Biswas M (1994) Damage detection in structures using changes in flexibility. J Sound Vib 169(1):3–17CrossRefMATH Pandey AK, Biswas M (1994) Damage detection in structures using changes in flexibility. J Sound Vib 169(1):3–17CrossRefMATH
20.
Zurück zum Zitat Wu D, Law SS (2004) Damage localization in plate structures from uniform load surface curvature. J Sound Vib 276(1–2):227–244CrossRef Wu D, Law SS (2004) Damage localization in plate structures from uniform load surface curvature. J Sound Vib 276(1–2):227–244CrossRef
21.
Zurück zum Zitat Bakhary N (2008) Structural condition monitoring and damage identification with artificial neural network. Dissertation, University of Western Australia, Perth Bakhary N (2008) Structural condition monitoring and damage identification with artificial neural network. Dissertation, University of Western Australia, Perth
22.
Zurück zum Zitat Wu X, Ghaboussi J, Garrett JH (1992) Use of neural networks in detection of structural damage. Comput Struct 42:649–659CrossRefMATH Wu X, Ghaboussi J, Garrett JH (1992) Use of neural networks in detection of structural damage. Comput Struct 42:649–659CrossRefMATH
23.
Zurück zum Zitat Suresh S, Omkar SN, Ganguli R, Mani V (2004) Identification of crack location and depth in a cantilever beam using a modular neural network approach. Smart Mater Struct 13:907–915CrossRef Suresh S, Omkar SN, Ganguli R, Mani V (2004) Identification of crack location and depth in a cantilever beam using a modular neural network approach. Smart Mater Struct 13:907–915CrossRef
24.
Zurück zum Zitat Sahin M, Shenoi RA (2003) Quantification and localisation of damage in beamlike structures by using artificial neural networks with experimental validation. Eng Struct 25(14):1785–1802CrossRef Sahin M, Shenoi RA (2003) Quantification and localisation of damage in beamlike structures by using artificial neural networks with experimental validation. Eng Struct 25(14):1785–1802CrossRef
25.
Zurück zum Zitat Das HC, Parhi DR (2009) Application of neural network for fault diagnosis of cracked cantilever beam. In: Proceedings of world congress on nature and biologically inspired computing, Coimbatore, pp 1303–1308 Das HC, Parhi DR (2009) Application of neural network for fault diagnosis of cracked cantilever beam. In: Proceedings of world congress on nature and biologically inspired computing, Coimbatore, pp 1303–1308
26.
Zurück zum Zitat Bakhary N, Hao H, Deeks A (2010) Substructuring technique for damage detection using statistical multi-stage artificial neural network. Adv Struct Eng 13(4):619–639CrossRef Bakhary N, Hao H, Deeks A (2010) Substructuring technique for damage detection using statistical multi-stage artificial neural network. Adv Struct Eng 13(4):619–639CrossRef
27.
Zurück zum Zitat Sumangala K, Jeyasehar CA (2011) A new procedure for damage assessment of prestressed concrete beams using artificial neural network. Adv Art Neur Syst 2011:1–9CrossRef Sumangala K, Jeyasehar CA (2011) A new procedure for damage assessment of prestressed concrete beams using artificial neural network. Adv Art Neur Syst 2011:1–9CrossRef
28.
Zurück zum Zitat Saeed RA, George LE (2011) The use of ANN for cracks predictions in curvilinear beams based on their natural frequencies and frequency response functions. J Comput 3(12):113–125 Saeed RA, George LE (2011) The use of ANN for cracks predictions in curvilinear beams based on their natural frequencies and frequency response functions. J Comput 3(12):113–125
29.
Zurück zum Zitat Bilgehan M (2011) Comparison of ANFIS and NN models-with a study in critical buckling load estimation. Appl Soft Comput 11(4):3779–3791CrossRef Bilgehan M (2011) Comparison of ANFIS and NN models-with a study in critical buckling load estimation. Appl Soft Comput 11(4):3779–3791CrossRef
30.
Zurück zum Zitat Bilgehan M, Gurel MA, Pekgokgoz RK, Kisa M (2012) Buckling load estimation of cracked columns using artificial neural network modeling technique. J Civ Eng Manag 18(4):568–579CrossRef Bilgehan M, Gurel MA, Pekgokgoz RK, Kisa M (2012) Buckling load estimation of cracked columns using artificial neural network modeling technique. J Civ Eng Manag 18(4):568–579CrossRef
31.
Zurück zum Zitat Li QS (2003) Vibratory characteristics of Timoshenko beams with arbitrary number of cracks. J Eng Mech ASCE 129(11):1355–1359CrossRef Li QS (2003) Vibratory characteristics of Timoshenko beams with arbitrary number of cracks. J Eng Mech ASCE 129(11):1355–1359CrossRef
32.
Zurück zum Zitat Dimarogonas AD (1996) Vibration of cracked structures: a state of the art review. Eng Fract Mech 55:831–857CrossRef Dimarogonas AD (1996) Vibration of cracked structures: a state of the art review. Eng Fract Mech 55:831–857CrossRef
33.
Zurück zum Zitat Hoit MI (1994) Computer assisted structural analysis and modeling. Prentice Hall, New Jersey Hoit MI (1994) Computer assisted structural analysis and modeling. Prentice Hall, New Jersey
34.
Zurück zum Zitat Civalek O (2004) Flexural and axial vibration analysis of beams with different support conditions using artificial neural networks. Struct Eng Mech 18(3):303–314CrossRef Civalek O (2004) Flexural and axial vibration analysis of beams with different support conditions using artificial neural networks. Struct Eng Mech 18(3):303–314CrossRef
35.
Zurück zum Zitat Haykin S (1998) Neural networks: a comprehensive foundation. Prentice Hall, New Jersey Haykin S (1998) Neural networks: a comprehensive foundation. Prentice Hall, New Jersey
36.
37.
Zurück zum Zitat Hagan MT, Menhaj MB (1994) Training feed forward networks with the Marquardt algorithm. IEEE T Neural Networ 5(6):861–867CrossRef Hagan MT, Menhaj MB (1994) Training feed forward networks with the Marquardt algorithm. IEEE T Neural Networ 5(6):861–867CrossRef
38.
Zurück zum Zitat Kisi O (2004) Multi-layer perceptrons with Levenberg–Marquardt training algorithm for suspended sediment concentration prediction and estimation. Hydrolog Sci J 49(6):1025–1040CrossRef Kisi O (2004) Multi-layer perceptrons with Levenberg–Marquardt training algorithm for suspended sediment concentration prediction and estimation. Hydrolog Sci J 49(6):1025–1040CrossRef
39.
Zurück zum Zitat Kisi O, Ay M (2011) Modeling dissolved oxygen (DO) concentration using different neural network technique. In: Proceedings of international Balkans conference on challenges of civil engineering, EPOKA University, Tirana Kisi O, Ay M (2011) Modeling dissolved oxygen (DO) concentration using different neural network technique. In: Proceedings of international Balkans conference on challenges of civil engineering, EPOKA University, Tirana
40.
Zurück zum Zitat Kocabas F, Unal S, Unal B (2008) A neural network approach for prediction of critical submergence of an intake in still water and open channel flow for permeable and impermeable bottom. Comput Fluids 37(8):1040–1046CrossRefMATH Kocabas F, Unal S, Unal B (2008) A neural network approach for prediction of critical submergence of an intake in still water and open channel flow for permeable and impermeable bottom. Comput Fluids 37(8):1040–1046CrossRefMATH
41.
Zurück zum Zitat Broomhead D, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Com Sys 2(6):321–355MATHMathSciNet Broomhead D, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Com Sys 2(6):321–355MATHMathSciNet
42.
Zurück zum Zitat Poggio T, Girosi F (1990) Regularization algorithms for learning that are equivalent to multilayer networks. Science 2247:978–982CrossRefMathSciNet Poggio T, Girosi F (1990) Regularization algorithms for learning that are equivalent to multilayer networks. Science 2247:978–982CrossRefMathSciNet
43.
Zurück zum Zitat Lee GC, Chang SH (2003) Radial basis neural network function networks applied to DNBR calculation in digital core protection systems. Ann Nucl Energy 30:1516–1572CrossRef Lee GC, Chang SH (2003) Radial basis neural network function networks applied to DNBR calculation in digital core protection systems. Ann Nucl Energy 30:1516–1572CrossRef
44.
Zurück zum Zitat Kocabas F, Unal S (2010) Compared techniques for the critical submergence of an intake in water flow. Adv Eng Softw 41(5):802–809CrossRefMATH Kocabas F, Unal S (2010) Compared techniques for the critical submergence of an intake in water flow. Adv Eng Softw 41(5):802–809CrossRefMATH
45.
Zurück zum Zitat Karunanithi N, Grenney WJ, Whitley D, Bovee K (1994) Neural networks for river flow prediction. J Comp Civil Eng ASCE 8(2):201–220CrossRef Karunanithi N, Grenney WJ, Whitley D, Bovee K (1994) Neural networks for river flow prediction. J Comp Civil Eng ASCE 8(2):201–220CrossRef
46.
Zurück zum Zitat Cigizoglu HK (2003) Estimation forecasting and extrapolation of flow data by artificial neural networks. Hydrol Sci J 48(3):349–361CrossRef Cigizoglu HK (2003) Estimation forecasting and extrapolation of flow data by artificial neural networks. Hydrol Sci J 48(3):349–361CrossRef
47.
Zurück zum Zitat Haykins S (2008) Neural networks and learning machines. Prentice Hall, New Jersey Haykins S (2008) Neural networks and learning machines. Prentice Hall, New Jersey
Metadaten
Titel
Damage detection in Timoshenko beam structures by multilayer perceptron and radial basis function networks
verfasst von
Kamil Aydin
Ozgur Kisi
Publikationsdatum
01.03.2014
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 3-4/2014
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-012-1270-1

Weitere Artikel der Ausgabe 3-4/2014

Neural Computing and Applications 3-4/2014 Zur Ausgabe