Skip to main content
Erschienen in: Engineering with Computers 3/2021

06.01.2020 | Original Article

Data discovering of inverse Robin boundary conditions problem in arbitrary connected domain through meshless radial point Hermite interpolation

verfasst von: Youssef El Seblani, Elyas Shivanian

Erschienen in: Engineering with Computers | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a suitable method is presented to treat the partial derivative equations, especially the Laplace equation having the Robin boundary conditions. These equations come from classical physics, especially the branch of thermodynamics, and have an efficient role in the field of heat and temperature. Our motivation is to reset a harmonic data obtained from Robin’s conditions in the arbitrary plane domain particularly on its boundaries. The applied method is a nodal Hermite meshless collocation technique at which it is formed of radial basis functions to get out the shape functions which is the key to construct the local bases in the neighborhoods of the nodal points. Moreover, by taking into consideration the Hermite interpolation technique, we can impose the boundary conditions directly, the named technique is called “MRPHI,” meshless radial point Hermite interpolation, and it is done on some examples so that trustworthy results are obtained.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mastascusa EJ (1988) Computer-assisted network and system analysis. Wiley, New York Mastascusa EJ (1988) Computer-assisted network and system analysis. Wiley, New York
2.
Zurück zum Zitat Cucinotta A, Selleri S, Vincetti L, Zoboli M (2002) Holey fiber analysis through the finite-element method. IEEE Photonics Technol Lett 14(11):1530–1532CrossRef Cucinotta A, Selleri S, Vincetti L, Zoboli M (2002) Holey fiber analysis through the finite-element method. IEEE Photonics Technol Lett 14(11):1530–1532CrossRef
3.
Zurück zum Zitat Hayashi M, Jin M, Thipprakmas S, Murakawa M, Hung J-C, Tsai Y-C, Hung C-H (2003) Simulation of ultrasonic-vibration drawing using the finite element method (fem). J Mater Process Technol 140(1–3):30–35CrossRef Hayashi M, Jin M, Thipprakmas S, Murakawa M, Hung J-C, Tsai Y-C, Hung C-H (2003) Simulation of ultrasonic-vibration drawing using the finite element method (fem). J Mater Process Technol 140(1–3):30–35CrossRef
4.
Zurück zum Zitat Dehghan M, Abbaszadeh M (2017) A finite element method for the numerical solution of rayleigh-stokes problem for a heated generalized second grade fluid with fractional derivatives. Eng Comput 33(3):587–605CrossRef Dehghan M, Abbaszadeh M (2017) A finite element method for the numerical solution of rayleigh-stokes problem for a heated generalized second grade fluid with fractional derivatives. Eng Comput 33(3):587–605CrossRef
5.
Zurück zum Zitat Lages EN, Paulino GH, Menezes IF, Silva RR (1999) Nonlinear finite element analysis using an object-oriented philosophy-application to beam elements and to the cosserat continuum. Eng Comput 15(1):73–89CrossRef Lages EN, Paulino GH, Menezes IF, Silva RR (1999) Nonlinear finite element analysis using an object-oriented philosophy-application to beam elements and to the cosserat continuum. Eng Comput 15(1):73–89CrossRef
6.
Zurück zum Zitat Kazem S, Dehghan M (2019) Semi-analytical solution for time-fractional diffusion equation based on finite difference method of lines (mol). Eng Comput 35(1):229–241CrossRef Kazem S, Dehghan M (2019) Semi-analytical solution for time-fractional diffusion equation based on finite difference method of lines (mol). Eng Comput 35(1):229–241CrossRef
7.
Zurück zum Zitat Li P-W, Fan C-M (2017) Generalized finite difference method for two-dimensional shallow water equations. Eng Anal Bound Elem 80:58–71MathSciNetCrossRef Li P-W, Fan C-M (2017) Generalized finite difference method for two-dimensional shallow water equations. Eng Anal Bound Elem 80:58–71MathSciNetCrossRef
8.
Zurück zum Zitat Parand K, Abbasbandy S, Kazem S, Rezaei A (2011) An improved numerical method for a class of astrophysics problems based on radial basis functions. Phys Scr 83(1):015011CrossRef Parand K, Abbasbandy S, Kazem S, Rezaei A (2011) An improved numerical method for a class of astrophysics problems based on radial basis functions. Phys Scr 83(1):015011CrossRef
9.
Zurück zum Zitat Kansa EJ, Aldredge RC, Ling L (2009) Numerical simulation of two-dimensional combustion using mesh-free methods. Eng Anal Bound Elem 33(7):940–950MathSciNetCrossRef Kansa EJ, Aldredge RC, Ling L (2009) Numerical simulation of two-dimensional combustion using mesh-free methods. Eng Anal Bound Elem 33(7):940–950MathSciNetCrossRef
10.
Zurück zum Zitat Abbasbandy S, Ghehsareh HR, Alhuthali MS, Alsulami HH (2014) Comparison of meshless local weak and strong forms based on particular solutions for a non-classical 2-d diffusion model. Eng Anal Bound Elem 39:121–128MathSciNetCrossRef Abbasbandy S, Ghehsareh HR, Alhuthali MS, Alsulami HH (2014) Comparison of meshless local weak and strong forms based on particular solutions for a non-classical 2-d diffusion model. Eng Anal Bound Elem 39:121–128MathSciNetCrossRef
11.
Zurück zum Zitat Abbasbandy S, Sladek V, Shirzadi A, Sladek J (2011) Numerical simulations for coupled pair of diffusion equations by mlpg method. CMES: Comput Model Eng Sci 71(1):15–38MathSciNetMATH Abbasbandy S, Sladek V, Shirzadi A, Sladek J (2011) Numerical simulations for coupled pair of diffusion equations by mlpg method. CMES: Comput Model Eng Sci 71(1):15–38MathSciNetMATH
12.
Zurück zum Zitat Mohammadi V, Mirzaei D, Dehghan M (2019) Numerical simulation and error estimation of the time-dependent allen-cahn equation on surfaces with radial basis functions. J Sci Comput 79(1):493–516MathSciNetCrossRef Mohammadi V, Mirzaei D, Dehghan M (2019) Numerical simulation and error estimation of the time-dependent allen-cahn equation on surfaces with radial basis functions. J Sci Comput 79(1):493–516MathSciNetCrossRef
13.
Zurück zum Zitat Hosseini VR, Shivanian E, Chen W (2016) Local radial point interpolation (mlrpi) method for solving time fractional diffusion-wave equation with damping. J Comput Phys 312:307–332MathSciNetCrossRef Hosseini VR, Shivanian E, Chen W (2016) Local radial point interpolation (mlrpi) method for solving time fractional diffusion-wave equation with damping. J Comput Phys 312:307–332MathSciNetCrossRef
14.
Zurück zum Zitat Hosseini VR, Shivanian E, Chen W (2015) Local integration of 2-d fractional telegraph equation via local radial point interpolant approximation. Eur Phy J Plus 130(2):33CrossRef Hosseini VR, Shivanian E, Chen W (2015) Local integration of 2-d fractional telegraph equation via local radial point interpolant approximation. Eur Phy J Plus 130(2):33CrossRef
15.
Zurück zum Zitat Shivanian E, Fatahi H (2019) Analysis of meshless local radial point interpolant on a model in population dynamics. Comput Methods Differ Equ 7(2):276–288MathSciNetMATH Shivanian E, Fatahi H (2019) Analysis of meshless local radial point interpolant on a model in population dynamics. Comput Methods Differ Equ 7(2):276–288MathSciNetMATH
18.
Zurück zum Zitat Adami S, Hu X, Adams NA (2012) A generalized wall boundary condition for smoothed particle hydrodynamics. J Comput Phys 231(21):7057–7075MathSciNetCrossRef Adami S, Hu X, Adams NA (2012) A generalized wall boundary condition for smoothed particle hydrodynamics. J Comput Phys 231(21):7057–7075MathSciNetCrossRef
19.
Zurück zum Zitat Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Meth Fluids 20(8–9):1081–1106MathSciNetCrossRef Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Meth Fluids 20(8–9):1081–1106MathSciNetCrossRef
20.
Zurück zum Zitat Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318MathSciNetCrossRef Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318MathSciNetCrossRef
21.
22.
Zurück zum Zitat Fasino D, Inglese G (1999) An inverse robin problem for laplace’s equation: theoretical results and numerical methods. Inverse Prob 15(1):41MathSciNetCrossRef Fasino D, Inglese G (1999) An inverse robin problem for laplace’s equation: theoretical results and numerical methods. Inverse Prob 15(1):41MathSciNetCrossRef
24.
Zurück zum Zitat Shivanian E, Jafarabadi A (2017) Inverse cauchy problem of annulus domains in the framework of spectral meshless radial point interpolation. Eng Comput 33(3):431–442CrossRef Shivanian E, Jafarabadi A (2017) Inverse cauchy problem of annulus domains in the framework of spectral meshless radial point interpolation. Eng Comput 33(3):431–442CrossRef
25.
Zurück zum Zitat Delvare F, Cimetière A, Pons F (2002) An iterative boundary element method for cauchy inverse problems. Comput Mech 28(3–4):291–302MathSciNetCrossRef Delvare F, Cimetière A, Pons F (2002) An iterative boundary element method for cauchy inverse problems. Comput Mech 28(3–4):291–302MathSciNetCrossRef
26.
Zurück zum Zitat Yang JP, Guan P-C, Fan C-M (2016) Weighted reproducing kernel collocation method and error analysis for inverse cauchy problems. Int J Appl Mech 8(03):1650030CrossRef Yang JP, Guan P-C, Fan C-M (2016) Weighted reproducing kernel collocation method and error analysis for inverse cauchy problems. Int J Appl Mech 8(03):1650030CrossRef
27.
Zurück zum Zitat Liu C-S (2008) A modified collocation trefftz method for the inverse cauchy problem of laplace equation. Eng Anal Bound Elem 32(9):778–785CrossRef Liu C-S (2008) A modified collocation trefftz method for the inverse cauchy problem of laplace equation. Eng Anal Bound Elem 32(9):778–785CrossRef
28.
Zurück zum Zitat Jourhmane M, Nachaoui A (1999) An alternating method for an inverse cauchy problem. Numer Algorithms 21(1–4):247MathSciNetCrossRef Jourhmane M, Nachaoui A (1999) An alternating method for an inverse cauchy problem. Numer Algorithms 21(1–4):247MathSciNetCrossRef
29.
Zurück zum Zitat Chakib A, Nachaoui A (2006) Convergence analysis for finite element approximation to an inverse cauchy problem. Inverse Prob 22(4):1191MathSciNetCrossRef Chakib A, Nachaoui A (2006) Convergence analysis for finite element approximation to an inverse cauchy problem. Inverse Prob 22(4):1191MathSciNetCrossRef
30.
Zurück zum Zitat Chen W, Fu Z-J (2009) Boundary particle method for inverse cauchy problems of inhomogeneous helmholtz equations. J Mar Sci Technol 17(3):157–163 Chen W, Fu Z-J (2009) Boundary particle method for inverse cauchy problems of inhomogeneous helmholtz equations. J Mar Sci Technol 17(3):157–163
31.
Zurück zum Zitat Bourgeois L (2005) A mixed formulation of quasi-reversibility to solve the cauchy problem for laplace’s equation. Inverse Prob 21(3):1087MathSciNetCrossRef Bourgeois L (2005) A mixed formulation of quasi-reversibility to solve the cauchy problem for laplace’s equation. Inverse Prob 21(3):1087MathSciNetCrossRef
32.
Zurück zum Zitat Fasshauer GE (2007) Meshfree approximation methods with MATLAB. World Scientific Publishing, SingaporeCrossRef Fasshauer GE (2007) Meshfree approximation methods with MATLAB. World Scientific Publishing, SingaporeCrossRef
33.
Zurück zum Zitat Mohammadzadeh R, Lakestani M, Dehghan M (2014) Collocation method for the numerical solutions of lane-emden type equations using cubic hermite spline functions. Math Methods Appl Sci 37(9):1303–1717MathSciNetCrossRef Mohammadzadeh R, Lakestani M, Dehghan M (2014) Collocation method for the numerical solutions of lane-emden type equations using cubic hermite spline functions. Math Methods Appl Sci 37(9):1303–1717MathSciNetCrossRef
34.
Zurück zum Zitat Franke C, Schaback R (1998) Solving partial differential equations by collocation using radial basis functions. Appl Math Comput 93(1):73–82MathSciNetMATH Franke C, Schaback R (1998) Solving partial differential equations by collocation using radial basis functions. Appl Math Comput 93(1):73–82MathSciNetMATH
35.
Zurück zum Zitat Sharan M, Kansa E, Gupta S (1997) Application of the multiquadric method for numerical solution of elliptic partial differential equations. Appl Math Comput 84(2–3):275–302MathSciNetMATH Sharan M, Kansa E, Gupta S (1997) Application of the multiquadric method for numerical solution of elliptic partial differential equations. Appl Math Comput 84(2–3):275–302MathSciNetMATH
36.
Zurück zum Zitat Kansa EJ (1990) Multiquadrics–a scattered data approximation scheme with applications to computational fluid-dynamics–i surface approximations and partial derivative estimates. Comput Math Appl 19(8–9):127–145MathSciNetCrossRef Kansa EJ (1990) Multiquadrics–a scattered data approximation scheme with applications to computational fluid-dynamics–i surface approximations and partial derivative estimates. Comput Math Appl 19(8–9):127–145MathSciNetCrossRef
37.
Zurück zum Zitat Wendland H (1998) Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J Approx Theory 93(2):258–272MathSciNetCrossRef Wendland H (1998) Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J Approx Theory 93(2):258–272MathSciNetCrossRef
38.
Zurück zum Zitat Powell MJ (1992) The theory of radial basis function approximation in 1990. In: Light W (ed) Advances in numerical analysis, vol I. Clarendon Press, Oxford, pp 105–210 Powell MJ (1992) The theory of radial basis function approximation in 1990. In: Light W (ed) Advances in numerical analysis, vol I. Clarendon Press, Oxford, pp 105–210
39.
Zurück zum Zitat Baratchart L, Bourgeois L, Leblond J (2016) Uniqueness results for inverse robin problems with bounded coefficient. J Funct Anal 270(7):2508–2542MathSciNetCrossRef Baratchart L, Bourgeois L, Leblond J (2016) Uniqueness results for inverse robin problems with bounded coefficient. J Funct Anal 270(7):2508–2542MathSciNetCrossRef
Metadaten
Titel
Data discovering of inverse Robin boundary conditions problem in arbitrary connected domain through meshless radial point Hermite interpolation
verfasst von
Youssef El Seblani
Elyas Shivanian
Publikationsdatum
06.01.2020
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 3/2021
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-019-00915-w

Weitere Artikel der Ausgabe 3/2021

Engineering with Computers 3/2021 Zur Ausgabe