Skip to main content
Erschienen in: Engineering with Computers 1/2024

10.04.2023 | Original Article

Data-driven multiscale finite-element method using deep neural network combined with proper orthogonal decomposition

verfasst von: Suhan Kim, Hyunseong Shin

Erschienen in: Engineering with Computers | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a data-driven multiscale finite-element method (data-driven FE2) is proposed using a deep neural network (DNN) and proper orthogonal decomposition (POD) to describe nonlinear heterogeneous materials. The concurrent classical FE2 needs the iterative calculations of microscopic boundary-value problem for representative volume element (RVE) at all integration points of the macroscopic structures. These iterative procedures need large computational time. To overcome this limitation, the proposed data-driven FE2 method solves the macroscopic problem by assigning data to all integration points that satisfy microscopic equilibrium by constructing a material genome database in which the microscopic problem of RVE is pre-calculated in online computing. Here, we developed a DNN model that can accurately and efficiently predict microscopic behavior by connecting POD for material genome database construction. Therefore, we improved the data-driven FE2 technique one step further by efficiently generating available material genome database.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yam CY, Meng L, Zhang Y, Chen GH (2015) A multiscale quantum mechanics/electromagnetics method for device simulations. Chem Soc Rev 44(7):1763–1776 Yam CY, Meng L, Zhang Y, Chen GH (2015) A multiscale quantum mechanics/electromagnetics method for device simulations. Chem Soc Rev 44(7):1763–1776
2.
Zurück zum Zitat Shen L, Wu J, Yang W (2016) Multiscale quantum mechanics/molecular mechanics simulations with neural networks. J Chem Theory Comput 12(10):4934–4946 Shen L, Wu J, Yang W (2016) Multiscale quantum mechanics/molecular mechanics simulations with neural networks. J Chem Theory Comput 12(10):4934–4946
3.
Zurück zum Zitat Choi J, Shin H, Cho M (2016) A multiscale mechanical model for the effective interphase of SWNT/epoxy nanocomposite. Polymer 89:159–171 Choi J, Shin H, Cho M (2016) A multiscale mechanical model for the effective interphase of SWNT/epoxy nanocomposite. Polymer 89:159–171
4.
Zurück zum Zitat Izvekov S, Voth GA (2005) A multiscale coarse-graining method for biomolecular systems. J Phys Chem B 109(7):2469–2473 Izvekov S, Voth GA (2005) A multiscale coarse-graining method for biomolecular systems. J Phys Chem B 109(7):2469–2473
5.
Zurück zum Zitat Noid WG, Chu JW et al (2008) The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. J Chem Phys 128(24):244114 Noid WG, Chu JW et al (2008) The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. J Chem Phys 128(24):244114
6.
Zurück zum Zitat Ghoniem NM, Busso EP, Kioussis N et al (2003) Multiscale modelling of nanomechanics and micromechanics: an overview. Philos Mag 83(31–34):3475–3528 Ghoniem NM, Busso EP, Kioussis N et al (2003) Multiscale modelling of nanomechanics and micromechanics: an overview. Philos Mag 83(31–34):3475–3528
7.
Zurück zum Zitat Zhang D, Waas AM (2014) A micromechanics based multiscale model for nonlinear composites. Acta Mech 225(4):1391–1417MathSciNet Zhang D, Waas AM (2014) A micromechanics based multiscale model for nonlinear composites. Acta Mech 225(4):1391–1417MathSciNet
8.
Zurück zum Zitat Odegard GM, Clancy TC, Gates TS (2005) Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46:553–562 Odegard GM, Clancy TC, Gates TS (2005) Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46:553–562
9.
Zurück zum Zitat Yang S, Cho M (2008) Scale bridging method to characterize mechanical properties of nanoparticle/polymer nanocomposites. Appl Phys Lett 93:043111 Yang S, Cho M (2008) Scale bridging method to characterize mechanical properties of nanoparticle/polymer nanocomposites. Appl Phys Lett 93:043111
10.
Zurück zum Zitat Yu S, Yang S, Cho M (2009) Multi-scale modeling of cross-linked epoxy nanocomposites. Polymer 50:945–952 Yu S, Yang S, Cho M (2009) Multi-scale modeling of cross-linked epoxy nanocomposites. Polymer 50:945–952
11.
Zurück zum Zitat Choi J, Yu S, Yang S, Cho M (2011) The glass transition and thermoelastic behavior of epoxy based nanocomposites: a molecular dynamics study. Polymer 52:5197–5203 Choi J, Yu S, Yang S, Cho M (2011) The glass transition and thermoelastic behavior of epoxy based nanocomposites: a molecular dynamics study. Polymer 52:5197–5203
12.
Zurück zum Zitat Choi J, Shin H, Yang S, Cho M (2015) The influence of nanoparticle size on the mechanical properties of polymer nanocomposites and the associated interphase region: a multiscale approach. Compos Struct 119:365–376 Choi J, Shin H, Yang S, Cho M (2015) The influence of nanoparticle size on the mechanical properties of polymer nanocomposites and the associated interphase region: a multiscale approach. Compos Struct 119:365–376
13.
Zurück zum Zitat Shin H, Cho M (2013) Multiscale model to predict fatigue crack propagation behavior of thermoset polymeric nanocomposites. Compos Part A Appl Sci Manuf 48:144–152 Shin H, Cho M (2013) Multiscale model to predict fatigue crack propagation behavior of thermoset polymeric nanocomposites. Compos Part A Appl Sci Manuf 48:144–152
14.
Zurück zum Zitat Zappalorto M, Salviato M, Quaresimin M (2012) A multiscale model to describe nano-composite fracture toughness enhancement by the plastic yielding of nanovoids. Compos Sci Technol 72:1683–1691 Zappalorto M, Salviato M, Quaresimin M (2012) A multiscale model to describe nano-composite fracture toughness enhancement by the plastic yielding of nanovoids. Compos Sci Technol 72:1683–1691
15.
Zurück zum Zitat Salviato M, Zappalorto M, Quaresimin M (2013) Plastic shear bands and fracture toughness improvements of nanoparticle filled polymers: a multiscale analytical model. Compos Part A Appl Sci Manuf 48:144–152 Salviato M, Zappalorto M, Quaresimin M (2013) Plastic shear bands and fracture toughness improvements of nanoparticle filled polymers: a multiscale analytical model. Compos Part A Appl Sci Manuf 48:144–152
16.
Zurück zum Zitat Quaresimin M, Salviato M, Zappalorto M (2014) A multi-scale and multi-mechanism approach for the fracture toughness assessment of polymer nanocomposites. Compos Sci Technol 91:16–21 Quaresimin M, Salviato M, Zappalorto M (2014) A multi-scale and multi-mechanism approach for the fracture toughness assessment of polymer nanocomposites. Compos Sci Technol 91:16–21
17.
Zurück zum Zitat Yang S, Choi J, Cho M (2012) Elastic stiffness and filler size effect of covalently grafted nanosilica polyimide composites: molecular dynamics study. ACS Appl Mater Interfaces 4:4792–4799 Yang S, Choi J, Cho M (2012) Elastic stiffness and filler size effect of covalently grafted nanosilica polyimide composites: molecular dynamics study. ACS Appl Mater Interfaces 4:4792–4799
18.
Zurück zum Zitat Shin H, Choi J, Cho M (2019) An efficient multiscale homogenization modeling approach to describe hyperelastic behavior of polymer nanocomposites. Compos Sci Technol 175:128–134 Shin H, Choi J, Cho M (2019) An efficient multiscale homogenization modeling approach to describe hyperelastic behavior of polymer nanocomposites. Compos Sci Technol 175:128–134
19.
Zurück zum Zitat Wang H, Shin H (2022) Influence of nanoparticulate diameter on fracture toughness improvement of polymer nanocomposites by a nanoparticle debonding mechanism: a multiscale study. Eng Fract Mech 261:108261 Wang H, Shin H (2022) Influence of nanoparticulate diameter on fracture toughness improvement of polymer nanocomposites by a nanoparticle debonding mechanism: a multiscale study. Eng Fract Mech 261:108261
20.
Zurück zum Zitat Shin H (2021) Multiscale model to predict fracture toughness of CNT/epoxy nanocomposites. Compos Struct 272:114236 Shin H (2021) Multiscale model to predict fracture toughness of CNT/epoxy nanocomposites. Compos Struct 272:114236
21.
Zurück zum Zitat Geers MGD, Kouznetsova VG, Brekelmans W (2010) Multi-scale computational homogenization: Trends and challenges. J Comput Appl Math 234(7):2175–2182 Geers MGD, Kouznetsova VG, Brekelmans W (2010) Multi-scale computational homogenization: Trends and challenges. J Comput Appl Math 234(7):2175–2182
22.
Zurück zum Zitat Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analyses of heterogeneous media. Comput Methods Appl Mech Eng 190:5427–5464MathSciNet Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analyses of heterogeneous media. Comput Methods Appl Mech Eng 190:5427–5464MathSciNet
23.
Zurück zum Zitat Matsui K, Terada K, Yuge K (2004) Two-scale finite element analysis of heterogeneous solids with periodic microstructures. Comput Struct 82:593–606 Matsui K, Terada K, Yuge K (2004) Two-scale finite element analysis of heterogeneous solids with periodic microstructures. Comput Struct 82:593–606
24.
Zurück zum Zitat Guedes JM, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83:143–198MathSciNet Guedes JM, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83:143–198MathSciNet
25.
Zurück zum Zitat Yu Q, Fish J (2002) Temporal homogenization of viscoelastic and viscoplastic solids subjected to locally periodic loading. Comput Mech 29:199–211MathSciNet Yu Q, Fish J (2002) Temporal homogenization of viscoelastic and viscoplastic solids subjected to locally periodic loading. Comput Mech 29:199–211MathSciNet
26.
Zurück zum Zitat Rocha IBCM, van der Meer FP, Sluys LJ (2019) Efficient micromechanical analysis of fiber-reinforced composites subjected to cyclic loading through time homogenization and reduced-order modeling. Comput Methods Appl Mech Eng 345:644–670MathSciNet Rocha IBCM, van der Meer FP, Sluys LJ (2019) Efficient micromechanical analysis of fiber-reinforced composites subjected to cyclic loading through time homogenization and reduced-order modeling. Comput Methods Appl Mech Eng 345:644–670MathSciNet
27.
Zurück zum Zitat Haouala S, Doghri I (2015) Modeling and algorithms for two-scale time homogenization of viscoelastic-viscoplastic solids under large numbers of cycles. Int J Plast 70:98–125 Haouala S, Doghri I (2015) Modeling and algorithms for two-scale time homogenization of viscoelastic-viscoplastic solids under large numbers of cycles. Int J Plast 70:98–125
28.
Zurück zum Zitat Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. Int J Numer Methods Eng 61:329–359MathSciNet Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. Int J Numer Methods Eng 61:329–359MathSciNet
29.
Zurück zum Zitat Chen W, Fish J (2001) A dispersive model for wave propagation in periodic composites based on homogenization with multiple spatial and temporal scales. J Appl Mech 68:153–161 Chen W, Fish J (2001) A dispersive model for wave propagation in periodic composites based on homogenization with multiple spatial and temporal scales. J Appl Mech 68:153–161
30.
Zurück zum Zitat Shin H (2020) Temporal homogenization formulation on general linear viscoelastic materials subjected to locally periodic loading. Int J Solids Struct 196:1–9 Shin H (2020) Temporal homogenization formulation on general linear viscoelastic materials subjected to locally periodic loading. Int J Solids Struct 196:1–9
31.
Zurück zum Zitat Lu X, Yvonnet J, Papadopoulos L, Kalogeris I, Papadopoulos V (2021) A stochastic FE2 data-driven method for nonlinear multiscale modeling. Materials 14:2975 Lu X, Yvonnet J, Papadopoulos L, Kalogeris I, Papadopoulos V (2021) A stochastic FE2 data-driven method for nonlinear multiscale modeling. Materials 14:2975
32.
Zurück zum Zitat Feyel F (1999) Multiscale FE2 elastoviscoplastic analysis of composite structure. Comput Mater Sci 16:433–454 Feyel F (1999) Multiscale FE2 elastoviscoplastic analysis of composite structure. Comput Mater Sci 16:433–454
33.
Zurück zum Zitat Feyel F, Chaboche JL (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183:309–330 Feyel F, Chaboche JL (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183:309–330
34.
Zurück zum Zitat Kouznetsova VG, Geers MGD, Brekelmans WAM (2001) A class of general algorithms for multi-scale analysis of heterogeneous media. Comput Methods Appl Mech Eng 190:5427–5464 Kouznetsova VG, Geers MGD, Brekelmans WAM (2001) A class of general algorithms for multi-scale analysis of heterogeneous media. Comput Methods Appl Mech Eng 190:5427–5464
35.
Zurück zum Zitat Ghosh S, Lee K, Raghavan P (2001) A multilevel computational model for multi-scale damage analysis in composite and porous media. Int J Solids Struct 38:2335–2385 Ghosh S, Lee K, Raghavan P (2001) A multilevel computational model for multi-scale damage analysis in composite and porous media. Int J Solids Struct 38:2335–2385
36.
Zurück zum Zitat Andrianov IV, Bolshakov VI et al (2008) Higher order asymptotic homogenization and wave propagation in periodic composite materials. Proc Math Phys Eng Sci Proc R Soc A Math Phys 464(2093):1181–1201MathSciNet Andrianov IV, Bolshakov VI et al (2008) Higher order asymptotic homogenization and wave propagation in periodic composite materials. Proc Math Phys Eng Sci Proc R Soc A Math Phys 464(2093):1181–1201MathSciNet
37.
Zurück zum Zitat Raju K, Tay TE, Tan VBC (2021) Review of the FE2 method for composites. Multiscale Multidiscip Model Exp Des 4:1–24 Raju K, Tay TE, Tan VBC (2021) Review of the FE2 method for composites. Multiscale Multidiscip Model Exp Des 4:1–24
38.
Zurück zum Zitat Fritzen F, Hodapp M (2016) The finite element square reduced (FE2R) method with GPU acceleration: towards three-dimensional two-scale simulations. Int J Numer Methods Eng 107(10):853–881 Fritzen F, Hodapp M (2016) The finite element square reduced (FE2R) method with GPU acceleration: towards three-dimensional two-scale simulations. Int J Numer Methods Eng 107(10):853–881
39.
Zurück zum Zitat Uchida M, Kaneko Y (2019) Nonlocal multiscale modeling of deformation behavior of polycrystalline copper by second-order homogenization method. EPJ B 92(9):1–11MathSciNet Uchida M, Kaneko Y (2019) Nonlocal multiscale modeling of deformation behavior of polycrystalline copper by second-order homogenization method. EPJ B 92(9):1–11MathSciNet
40.
Zurück zum Zitat Yvonnet J, He QC (2007) The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains. J Comput Phys 223(1):341–368MathSciNet Yvonnet J, He QC (2007) The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains. J Comput Phys 223(1):341–368MathSciNet
41.
Zurück zum Zitat Le B, Yvonnet J, He QC (2015) Computational homogenization of nonlinear elastic materials using neural networks. Int J Numer Methods Eng 104(12):1061–1084MathSciNet Le B, Yvonnet J, He QC (2015) Computational homogenization of nonlinear elastic materials using neural networks. Int J Numer Methods Eng 104(12):1061–1084MathSciNet
42.
Zurück zum Zitat Lu X, Giovanis DG, Yvonnet J, Papadopoulos V, Detrez F, Bai J (2019) A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites. Comput Mech 64(2):307–321MathSciNet Lu X, Giovanis DG, Yvonnet J, Papadopoulos V, Detrez F, Bai J (2019) A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites. Comput Mech 64(2):307–321MathSciNet
43.
Zurück zum Zitat Xu R, Yang J, Yan W et al (2020) Data-driven multiscale finite element method: From concurrence to separation. Comput Methods Appl Mech Eng 363:112893MathSciNet Xu R, Yang J, Yan W et al (2020) Data-driven multiscale finite element method: From concurrence to separation. Comput Methods Appl Mech Eng 363:112893MathSciNet
44.
Zurück zum Zitat Kirchdoerfer T, Ortiz M (2016) Data-driven computational mechanics. Comput Methods Appl Mech Eng 304:81–101MathSciNet Kirchdoerfer T, Ortiz M (2016) Data-driven computational mechanics. Comput Methods Appl Mech Eng 304:81–101MathSciNet
45.
Zurück zum Zitat Kirchdoerfer T, Ortiz M (2017) Data driven computing with noisy material data sets. Comput Methods Appl Mech Eng 326:622–641MathSciNet Kirchdoerfer T, Ortiz M (2017) Data driven computing with noisy material data sets. Comput Methods Appl Mech Eng 326:622–641MathSciNet
46.
Zurück zum Zitat Nguyen LTK, Keip M-A (2018) A data-driven approach to nonlinear elasticity. Comput Struct 194:97–115 Nguyen LTK, Keip M-A (2018) A data-driven approach to nonlinear elasticity. Comput Struct 194:97–115
47.
Zurück zum Zitat Kirchdoerfer T, Ortiz M (2018) Data-driven computing in dynamics. Int J Numer Methods Eng 113(11):1697–1710MathSciNet Kirchdoerfer T, Ortiz M (2018) Data-driven computing in dynamics. Int J Numer Methods Eng 113(11):1697–1710MathSciNet
48.
Zurück zum Zitat Yang J, Xu R, Hu H, Huang Q, Huang W (2019) Structural-genome-driven computing for composite structures. Compos Struct 215:446–453 Yang J, Xu R, Hu H, Huang Q, Huang W (2019) Structural-genome-driven computing for composite structures. Compos Struct 215:446–453
49.
Zurück zum Zitat Eggersmann R, Kirchdoerfer T, Reese S, Stainier L, Ortiz M (2019) Model-free data-driven inelasticity. Comput Methods Appl Mech Eng 350:81–99MathSciNet Eggersmann R, Kirchdoerfer T, Reese S, Stainier L, Ortiz M (2019) Model-free data-driven inelasticity. Comput Methods Appl Mech Eng 350:81–99MathSciNet
50.
Zurück zum Zitat Huang Y, Deng Y (2022) A hybrid model utilizing principal component analysis and artificial neural networks for driving drowsiness detection. Appl Sci 12(12):6007 Huang Y, Deng Y (2022) A hybrid model utilizing principal component analysis and artificial neural networks for driving drowsiness detection. Appl Sci 12(12):6007
51.
Zurück zum Zitat Shin H, Lee JK, Kim J, Kim J (2017) Continual learning with deep generative replay. Adv Neural Inf Process Syst 30:1–10 Shin H, Lee JK, Kim J, Kim J (2017) Continual learning with deep generative replay. Adv Neural Inf Process Syst 30:1–10
52.
Zurück zum Zitat Lopez-Paz D, Ranzato MA (2017) Gradient episodic memory for continual learning. Adv Neural Inf Process Syst 30:1–10 Lopez-Paz D, Ranzato MA (2017) Gradient episodic memory for continual learning. Adv Neural Inf Process Syst 30:1–10
53.
Zurück zum Zitat Kirkpatrick J, Pascanu R et al (2017) Overcoming catastrophic forgetting in neural networks. Proc Natl Acad Sci USA 114(13):3521–3526MathSciNet Kirkpatrick J, Pascanu R et al (2017) Overcoming catastrophic forgetting in neural networks. Proc Natl Acad Sci USA 114(13):3521–3526MathSciNet
Metadaten
Titel
Data-driven multiscale finite-element method using deep neural network combined with proper orthogonal decomposition
verfasst von
Suhan Kim
Hyunseong Shin
Publikationsdatum
10.04.2023
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 1/2024
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-023-01813-y

Weitere Artikel der Ausgabe 1/2024

Engineering with Computers 1/2024 Zur Ausgabe

Neuer Inhalt