Skip to main content
Erschienen in: International Journal of Computer Vision 11/2023

29.06.2023

DCP–NAS: Discrepant Child–Parent Neural Architecture Search for 1-bit CNNs

verfasst von: Yanjing Li, Sheng Xu, Xianbin Cao, Li’an Zhuo, Baochang Zhang, Tian Wang, Guodong Guo

Erschienen in: International Journal of Computer Vision | Ausgabe 11/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Neural architecture search (NAS) proves to be among the effective approaches for many tasks by generating an application-adaptive neural architecture, which is still challenged by high computational cost and memory consumption. At the same time, 1-bit convolutional neural networks (CNNs) with binary weights and activations show their potential for resource-limited embedded devices. One natural approach is to use 1-bit CNNs to reduce the computation and memory cost of NAS by taking advantage of the strengths of each in a unified framework, while searching the 1-bit CNNs is more challenging due to the more complicated processes involved. In this paper, we introduce Discrepant Child–Parent Neural Architecture Search (DCP–NAS) to efficiently search 1-bit CNNs, based on a new framework of searching the 1-bit model (Child) under the supervision of a real-valued model (Parent). Particularly, we first utilize a Parent model to calculate a tangent direction, based on which the tangent propagation method is introduced to search the optimized 1-bit Child. We further observe a coupling relationship between the weights and architecture parameters existing in such differentiable frameworks. To address the issue, we propose a decoupled optimization method to search an optimized architecture. Extensive experiments demonstrate that our DCP–NAS achieves much better results than prior arts on both CIFAR-10 and ImageNet datasets. In particular, the backbones achieved by our DCP–NAS achieve strong generalization performance on person re-identification and object detection.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bengio, Y., Léonard, N., & Courville, A. (2013). Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv:1308.3432. Bengio, Y., Léonard, N., & Courville, A. (2013). Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv:​1308.​3432.
Zurück zum Zitat Brock, A., Lim, T., Ritchie, J. M., & Weston, N. (2017). Smash: One-shot model architecture search through hypernetworks. arXiv preprint arXiv:1708.05344. Brock, A., Lim, T., Ritchie, J. M., & Weston, N. (2017). Smash: One-shot model architecture search through hypernetworks. arXiv preprint arXiv:​1708.​05344.
Zurück zum Zitat Bulat, A., Martinez, B., & Tzimiropoulos, G. (2020a). Bats: Binary architecture search. In Proc. of ECCV pp. 309–325. Bulat, A., Martinez, B., & Tzimiropoulos, G. (2020a). Bats: Binary architecture search. In Proc. of ECCV pp. 309–325.
Zurück zum Zitat Bulat, A., & Tzimiropoulos, G. (2019). Xnor-net++: Improved binary neural networks. In Proc. of BMVC pp. 1–12. Bulat, A., & Tzimiropoulos, G. (2019). Xnor-net++: Improved binary neural networks. In Proc. of BMVC pp. 1–12.
Zurück zum Zitat Cai, H., Chen, T., Zhang, W., Yu, Y., & Wang, J. (2018a). Efficient architecture search by network transformation. In Proc. of AAAI pp. 2787–2794. Cai, H., Chen, T., Zhang, W., Yu, Y., & Wang, J. (2018a). Efficient architecture search by network transformation. In Proc. of AAAI pp. 2787–2794.
Zurück zum Zitat Cai, H., Yang, J., Zhang, W., Han, S., & Yu, Y. (2018b). Path-level network transformation for efficient architecture search. In Proc. of ICML pp. 678–687. Cai, H., Yang, J., Zhang, W., Han, S., & Yu, Y. (2018b). Path-level network transformation for efficient architecture search. In Proc. of ICML pp. 678–687.
Zurück zum Zitat Cai, H., Zhu, L., & Han, S. (2018c). Proxylessnas: Direct neural architecture search on target task and hardware. In Proc. of ICLR pp. 1–13. Cai, H., Zhu, L., & Han, S. (2018c). Proxylessnas: Direct neural architecture search on target task and hardware. In Proc. of ICLR pp. 1–13.
Zurück zum Zitat Chen, H., Zhang, B., Zheng, X., Liu, J., Doermann, D., Ji, R., et al. (2020). Binarized neural architecture search. In Proc. of AAAI pp. 10526–10533. Chen, H., Zhang, B., Zheng, X., Liu, J., Doermann, D., Ji, R., et al. (2020). Binarized neural architecture search. In Proc. of AAAI pp. 10526–10533.
Zurück zum Zitat Chen, H., Zhuo, L., Zhang, B., Zheng, X., Liu, J., Ji, R., Doermann, D., & Guo, G. (2021). Binarized neural architecture search for efficient object recognition. International Journal of Computer Vision, 129(2), 501–516.CrossRef Chen, H., Zhuo, L., Zhang, B., Zheng, X., Liu, J., Ji, R., Doermann, D., & Guo, G. (2021). Binarized neural architecture search for efficient object recognition. International Journal of Computer Vision, 129(2), 501–516.CrossRef
Zurück zum Zitat Chen, X., Xie, L., Wu, J., & Tian, Q. (2019a). Progressive differentiable architecture search: Bridging the depth gap between search and evaluation. In Proc. of CVPR pp. 1294–1303. Chen, X., Xie, L., Wu, J., & Tian, Q. (2019a). Progressive differentiable architecture search: Bridging the depth gap between search and evaluation. In Proc. of CVPR pp. 1294–1303.
Zurück zum Zitat Chen, Y., Yang, T., Zhang, X., Meng, G., Xiao, X., & Sun, J. (2019b). Detnas: Backbone search for object detection. In Proc. of NeuIPS pp. 6642–6652. Chen, Y., Yang, T., Zhang, X., Meng, G., Xiao, X., & Sun, J. (2019b). Detnas: Backbone search for object detection. In Proc. of NeuIPS pp. 6642–6652.
Zurück zum Zitat Courbariaux, M., Bengio, Y., David, J. P. (2015). Binaryconnect: Training deep neural networks with binary weights during propagations. In Proc. of NeuIPS pp. 3123–3131. Courbariaux, M., Bengio, Y., David, J. P. (2015). Binaryconnect: Training deep neural networks with binary weights during propagations. In Proc. of NeuIPS pp. 3123–3131.
Zurück zum Zitat Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016). Binarized neural networks: Training deep neural networks with weights and activations constrained to + 1 or-1. arXiv preprint arXiv:1602.02830. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016). Binarized neural networks: Training deep neural networks with weights and activations constrained to + 1 or-1. arXiv preprint arXiv:​1602.​02830.
Zurück zum Zitat Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In Proc. of CVPR pp. 248–255. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In Proc. of CVPR pp. 248–255.
Zurück zum Zitat Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2010). The pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 88(2), 303–338.CrossRef Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2010). The pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 88(2), 303–338.CrossRef
Zurück zum Zitat Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D. (2009). Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9), 1627–1645.CrossRef Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D. (2009). Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9), 1627–1645.CrossRef
Zurück zum Zitat Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M. W., & Keutzer, K. (2021). A survey of quantization methods for efficient neural network inference. arXiv:2103.13630. Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M. W., & Keutzer, K. (2021). A survey of quantization methods for efficient neural network inference. arXiv:​2103.​13630.
Zurück zum Zitat Gu, J., Li, C., Zhang, B., Han, J., Cao, X., Liu, J., & Doermann, D. (2019). Projection convolutional neural networks for 1-bit cnns via discrete back propagation. In Proc. of AAAI pp. 8344–8351. Gu, J., Li, C., Zhang, B., Han, J., Cao, X., Liu, J., & Doermann, D. (2019). Projection convolutional neural networks for 1-bit cnns via discrete back propagation. In Proc. of AAAI pp. 8344–8351.
Zurück zum Zitat Guo, Y., Yao, A., & Chen, Y. (2016). Dynamic network surgery for efficient dnns. In Proc. of NeuIPS pp. 1379–1387. Guo, Y., Yao, A., & Chen, Y. (2016). Dynamic network surgery for efficient dnns. In Proc. of NeuIPS pp. 1379–1387.
Zurück zum Zitat Han, S., Pool, J., Tran, J., & Dally, W. (2015). Learning both weights and connections for efficient neural network. In Proc. of NeuIPS pp. 1135–1143. Han, S., Pool, J., Tran, J., & Dally, W. (2015). Learning both weights and connections for efficient neural network. In Proc. of NeuIPS pp. 1135–1143.
Zurück zum Zitat He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proc. of ICCV pp. 1026–1034. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proc. of ICCV pp. 1026–1034.
Zurück zum Zitat He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proc. of CVPR pp. 770–778. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proc. of CVPR pp. 770–778.
Zurück zum Zitat Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861. Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv:​1704.​04861.
Zurück zum Zitat Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proc. of CVPR pp. 4700–4708. Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proc. of CVPR pp. 4700–4708.
Zurück zum Zitat Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016). Binarized neural networks. In Proc. of NeuIPS pp. 1–9. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016). Binarized neural networks. In Proc. of NeuIPS pp. 1–9.
Zurück zum Zitat Juefei-Xu, F., Naresh Boddeti, V., Savvides, M. (2017). Local binary convolutional neural networks. In Proc. of CVPR pp. 19–28. Juefei-Xu, F., Naresh Boddeti, V., Savvides, M. (2017). Local binary convolutional neural networks. In Proc. of CVPR pp. 19–28.
Zurück zum Zitat Kim, D., Singh, K. P., & Choi, J. (2020). Learning architectures for binary networks. In Proc. of ECCV pp. 575–591. Kim, D., Singh, K. P., & Choi, J. (2020). Learning architectures for binary networks. In Proc. of ECCV pp. 575–591.
Zurück zum Zitat Kim, D., Singh, K. P., & Choi, J. (2021). Bnas v2: Learning architectures for binary networks with empirical improvements. arXiv preprint arXiv:2110.08562. Kim, D., Singh, K. P., & Choi, J. (2021). Bnas v2: Learning architectures for binary networks with empirical improvements. arXiv preprint arXiv:​2110.​08562.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Proc. of NeuIPS, 25, 1097–1105. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Proc. of NeuIPS, 25, 1097–1105.
Zurück zum Zitat Li, H., Kadav, A., Durdanovic, I., Samet, H., & Peter Graf, H. (2017a). Pruning filters for efficient convnets. In Proc. of ICLR pp. 1–13. Li, H., Kadav, A., Durdanovic, I., Samet, H., & Peter Graf, H. (2017a). Pruning filters for efficient convnets. In Proc. of ICLR pp. 1–13.
Zurück zum Zitat Li, W., Zhao, R., Xiao, T., & Wang, X. (2014). Deepreid: Deep filter pairing neural network for person re-identification. In Proc. of CVPR pp. 152–159. Li, W., Zhao, R., Xiao, T., & Wang, X. (2014). Deepreid: Deep filter pairing neural network for person re-identification. In Proc. of CVPR pp. 152–159.
Zurück zum Zitat Li, Y., Xu, S., Zhang, B., Cao, X., Gao, P., & Guo, G. (2022). Q-ViT: Accurate and fully quantized low-bit vision transformer. arXiv:2210.06707. Li, Y., Xu, S., Zhang, B., Cao, X., Gao, P., & Guo, G. (2022). Q-ViT: Accurate and fully quantized low-bit vision transformer. arXiv:​2210.​06707.
Zurück zum Zitat Li, Z., Ni, B., Zhang, W., Yang, X., & Gao, W. (2017b). Performance guaranteed network acceleration via high-order residual quantization. In Proc. of ICCV pp. 2584–2592. Li, Z., Ni, B., Zhang, W., Yang, X., & Gao, W. (2017b). Performance guaranteed network acceleration via high-order residual quantization. In Proc. of ICCV pp. 2584–2592.
Zurück zum Zitat Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017a). Feature pyramid networks for object detection. In Proc. of CVPR pp. 2117–2125. Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017a). Feature pyramid networks for object detection. In Proc. of CVPR pp. 2117–2125.
Zurück zum Zitat Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In Proc. of ECCV pp. 740–755. Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In Proc. of ECCV pp. 740–755.
Zurück zum Zitat Lin, X., Zhao, C., & Pan, W. (2017b). Towards accurate binary convolutional neural network. In Proc. of NeuIPS pp. 344–352. Lin, X., Zhao, C., & Pan, W. (2017b). Towards accurate binary convolutional neural network. In Proc. of NeuIPS pp. 344–352.
Zurück zum Zitat Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L. J., Fei-Fei, L., Yuille, A., Huang, J., & Murphy, K. (2018a). Progressive neural architecture search. In Proc. of ECCV pp. 19–34. Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L. J., Fei-Fei, L., Yuille, A., Huang, J., & Murphy, K. (2018a). Progressive neural architecture search. In Proc. of ECCV pp. 19–34.
Zurück zum Zitat Liu, H., Simonyan, K., & Yang, Y. (2018b). Darts: Differentiable architecture search. In Proc. of ICLR pp. 1–13. Liu, H., Simonyan, K., & Yang, Y. (2018b). Darts: Differentiable architecture search. In Proc. of ICLR pp. 1–13.
Zurück zum Zitat Liu, Z., Luo, W., Wu, B., Yang, X., Liu, W., & Cheng, K. T. (2020a). Bi-real net: Binarizing deep network towards real-network performance. International Journal of Computer Vision, 128(1), 202–219. Liu, Z., Luo, W., Wu, B., Yang, X., Liu, W., & Cheng, K. T. (2020a). Bi-real net: Binarizing deep network towards real-network performance. International Journal of Computer Vision, 128(1), 202–219.
Zurück zum Zitat Liu, Z., Shen, Z., Li, S., Helwegen, K., Huang, D., & Cheng, K. T. (2021). How do adam and training strategies help bnns optimization. In Proc. of ICML pp. 6936–6946. Liu, Z., Shen, Z., Li, S., Helwegen, K., Huang, D., & Cheng, K. T. (2021). How do adam and training strategies help bnns optimization. In Proc. of ICML pp. 6936–6946.
Zurück zum Zitat Liu, Z., Shen, Z., Savvides, M., & Cheng, K. T. (2020b). Reactnet: Towards precise binary neural network with generalized activation functions. In Proc. of ECCV pp. 143–159 Liu, Z., Shen, Z., Savvides, M., & Cheng, K. T. (2020b). Reactnet: Towards precise binary neural network with generalized activation functions. In Proc. of ECCV pp. 143–159
Zurück zum Zitat Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., & Cheng, K. T. (2018c). Bi-real net: Enhancing the performance of 1-bit CNNS with improved representational capability and advanced training algorithm. In Proc. of ECCV pp. 722–737. Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., & Cheng, K. T. (2018c). Bi-real net: Enhancing the performance of 1-bit CNNS with improved representational capability and advanced training algorithm. In Proc. of ECCV pp. 722–737.
Zurück zum Zitat Novikov, A., Podoprikhin, D., Osokin, A., & Vetrov, D. P. (2015). Tensorizing neural networks. In Proc. of NeuIPS pp. 442–450. Novikov, A., Podoprikhin, D., Osokin, A., & Vetrov, D. P. (2015). Tensorizing neural networks. In Proc. of NeuIPS pp. 442–450.
Zurück zum Zitat Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., & Lerer, A. (2017). Automatic differentiation in pytorch. In Proc. of NeuIPS Workshops pp. 1–4. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., & Lerer, A. (2017). Automatic differentiation in pytorch. In Proc. of NeuIPS Workshops pp. 1–4.
Zurück zum Zitat Petersen, K. B., Pedersen, M. S., et al. (2008). The matrix cookbook. Technical University of Denmark, 7(15), 510. Petersen, K. B., Pedersen, M. S., et al. (2008). The matrix cookbook. Technical University of Denmark, 7(15), 510.
Zurück zum Zitat Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., & Dean, J. (2018). Efficient neural architecture search via parameter sharing. In Proc. of ICML pp. 4095–4104. Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., & Dean, J. (2018). Efficient neural architecture search via parameter sharing. In Proc. of ICML pp. 4095–4104.
Zurück zum Zitat Phan, H., Liu, Z., Huynh, D., Savvides, M., Cheng, K. T., & Shen, Z. (2020). Binarizing mobilenet via evolution-based searching. In Proc. of CVPR pp. 13420–13429. Phan, H., Liu, Z., Huynh, D., Savvides, M., Cheng, K. T., & Shen, Z. (2020). Binarizing mobilenet via evolution-based searching. In Proc. of CVPR pp. 13420–13429.
Zurück zum Zitat Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016). Xnor-net: Imagenet classification using binary convolutional neural networks. In Proc. of ECCV pp. 525–542. Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016). Xnor-net: Imagenet classification using binary convolutional neural networks. In Proc. of ECCV pp. 525–542.
Zurück zum Zitat Real, E., Aggarwal, A., Huang, Y., & Le, Q. V. (2019). Regularized evolution for image classifier architecture search. In Proc. of AAAI pp. 4780–4789. Real, E., Aggarwal, A., Huang, Y., & Le, Q. V. (2019). Regularized evolution for image classifier architecture search. In Proc. of AAAI pp. 4780–4789.
Zurück zum Zitat Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In Proc. of ICLR pp. 1–15. Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In Proc. of ICLR pp. 1–15.
Zurück zum Zitat Tan, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. In Proc. of ICML pp. 6105–6114. Tan, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. In Proc. of ICML pp. 6105–6114.
Zurück zum Zitat Wang, N., Gao, Y., Chen, H., Wang, P., Tian, Z., Shen, C., & Zhang, Y. (2020a). Nas-fcos: Fast neural architecture search for object detection. In Proc. of CVPR pp. 11943–11951. Wang, N., Gao, Y., Chen, H., Wang, P., Tian, Z., Shen, C., & Zhang, Y. (2020a). Nas-fcos: Fast neural architecture search for object detection. In Proc. of CVPR pp. 11943–11951.
Zurück zum Zitat Wang, X., Zhang, B., Li, C., Ji, R., Han, J., Cao, X., & Liu, J. (2018). Modulated convolutional networks. In Proc. of CVPR. Wang, X., Zhang, B., Li, C., Ji, R., Han, J., Cao, X., & Liu, J. (2018). Modulated convolutional networks. In Proc. of CVPR.
Zurück zum Zitat Wang, Z., Wu, Z., Lu, J., & Zhou, J. (2020b). Bidet: An efficient binarized object detector. In Proc. of CVPR pp. 2049–2058. Wang, Z., Wu, Z., Lu, J., & Zhou, J. (2020b). Bidet: An efficient binarized object detector. In Proc. of CVPR pp. 2049–2058.
Zurück zum Zitat Xie, S., Zheng, H., Liu, C., & Lin, L. (2018). Snas: stochastic neural architecture search. In Proc. of ICLR pp. 1–17. Xie, S., Zheng, H., Liu, C., & Lin, L. (2018). Snas: stochastic neural architecture search. In Proc. of ICLR pp. 1–17.
Zurück zum Zitat Xu, S., Li, Y., Lin, M., Gao, P., Guo, G., Lu, J., & Zhang, B. (2023). Q-detr: An efficient low-bit quantized detection transformer. arXiv preprint arXiv:2304.00253. Xu, S., Li, Y., Lin, M., Gao, P., Guo, G., Lu, J., & Zhang, B. (2023). Q-detr: An efficient low-bit quantized detection transformer. arXiv preprint arXiv:​2304.​00253.
Zurück zum Zitat Xu, S., Li, Y., Wang, T., Ma, T., Zhang, B., Gao, P., Qiao, Y., Lu, J., & Guo, G. (2022a). Recurrent bilinear optimization for binary neural networks. In Proc. of Computer Vision—ECCV. Springer. Xu, S., Li, Y., Wang, T., Ma, T., Zhang, B., Gao, P., Qiao, Y., Lu, J., & Guo, G. (2022a). Recurrent bilinear optimization for binary neural networks. In Proc. of Computer Vision—ECCV. Springer.
Zurück zum Zitat Xu, S., Li, Y., Zeng, B., Ma, T., Zhang, B., Cao, X., Gao, P., & Lu, J. (2022b). Ida-det: An information discrepancy-aware distillation for 1-bit detectors. In Computer Vision—ECCV 2022. Springer. Xu, S., Li, Y., Zeng, B., Ma, T., Zhang, B., Cao, X., Gao, P., & Lu, J. (2022b). Ida-det: An information discrepancy-aware distillation for 1-bit detectors. In Computer Vision—ECCV 2022. Springer.
Zurück zum Zitat Xu, S., Liu, C., Zhang, B., Lü, J., Guo, G., & Doermann, D. (2022c). Bire-id: Binary neural network for efficient person re-id. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 18(1s), 1–22. Xu, S., Liu, C., Zhang, B., Lü, J., Guo, G., & Doermann, D. (2022c). Bire-id: Binary neural network for efficient person re-id. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 18(1s), 1–22.
Zurück zum Zitat Xu, S., Zhao, J., Lu, J., Zhang, B., Han, S., & Doermann, D. (2021b). Layer-wise searching for 1-bit detectors. In Proc. of CVPR pp. 5682–5691. Xu, S., Zhao, J., Lu, J., Zhang, B., Han, S., & Doermann, D. (2021b). Layer-wise searching for 1-bit detectors. In Proc. of CVPR pp. 5682–5691.
Zurück zum Zitat Xu, Y., Xie, L., Zhang, X., Chen, X., Qi, G. J., Tian, Q., & Xiong, H. (2019). Pc-darts: Partial channel connections for memory-efficient architecture search. In Proc. of ICLR, pp. 1–13. Xu, Y., Xie, L., Zhang, X., Chen, X., Qi, G. J., Tian, Q., & Xiong, H. (2019). Pc-darts: Partial channel connections for memory-efficient architecture search. In Proc. of ICLR, pp. 1–13.
Zurück zum Zitat Xu, Z., Lin, M., Liu, J., Chen, J., Shao, L., Gao, Y., Tian, Y., & Ji, R. (2021b). Recu: Reviving the dead weights in binary neural networks. In Proc. of ICCV pp. 5198–5208. Xu, Z., Lin, M., Liu, J., Chen, J., Shao, L., Gao, Y., Tian, Y., & Ji, R. (2021b). Recu: Reviving the dead weights in binary neural networks. In Proc. of ICCV pp. 5198–5208.
Zurück zum Zitat Xue, S., Wang, R., Zhang, B., Wang, T., Guo, G., & Doermann, D. (2021). Idarts: Interactive differentiable architecture search. In Proc. of ICCV pp. 1163–1172. Xue, S., Wang, R., Zhang, B., Wang, T., Guo, G., & Doermann, D. (2021). Idarts: Interactive differentiable architecture search. In Proc. of ICCV pp. 1163–1172.
Zurück zum Zitat Zagoruyko, S., & Komodakis, N. (2016). Wide residual networks. In Proc. of BMVC pp. 1–13. Zagoruyko, S., & Komodakis, N. (2016). Wide residual networks. In Proc. of BMVC pp. 1–13.
Zurück zum Zitat Zhang, X., Zou, J., He, K., & Sun, J. (2016). Accelerating very deep convolutional networks for classification and detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(10), 1943–1955.CrossRef Zhang, X., Zou, J., He, K., & Sun, J. (2016). Accelerating very deep convolutional networks for classification and detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(10), 1943–1955.CrossRef
Zurück zum Zitat Zhao, J., Xu, S., Zhang, B., Gu, J., Doermann, D., & Guo, G. (2022). Towards compact 1-bit CNNS via Bayesian learning. International Journal of Computer Vision, 130(2), 201–225.CrossRef Zhao, J., Xu, S., Zhang, B., Gu, J., Doermann, D., & Guo, G. (2022). Towards compact 1-bit CNNS via Bayesian learning. International Journal of Computer Vision, 130(2), 201–225.CrossRef
Zurück zum Zitat Zhao, T., Ning, X., Shi, X., Yang, S., Liang, S., Lei, P., Chen, J., Yang, H., & Wang, Y. (2020). Bars: Joint search of cell topology and layout for accurate and efficient binary architectures. arXiv:2011.10804. Zhao, T., Ning, X., Shi, X., Yang, S., Liang, S., Lei, P., Chen, J., Yang, H., & Wang, Y. (2020). Bars: Joint search of cell topology and layout for accurate and efficient binary architectures. arXiv:​2011.​10804.
Zurück zum Zitat Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., & Tian, Q. (2015). Scalable person re-identification: A benchmark. In Proc. of ICCV pp. 1116–1124. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., & Tian, Q. (2015). Scalable person re-identification: A benchmark. In Proc. of ICCV pp. 1116–1124.
Zurück zum Zitat Zheng, X., Ji, R., Tang, L., Wan, Y., Zhang, B., Wu, Y., Wu, Y., & Shao, L. (2019a). Dynamic distribution pruning for efficient network architecture search. arXiv preprint arXiv:1905.13543 Zheng, X., Ji, R., Tang, L., Wan, Y., Zhang, B., Wu, Y., Wu, Y., & Shao, L. (2019a). Dynamic distribution pruning for efficient network architecture search. arXiv preprint arXiv:​1905.​13543
Zurück zum Zitat Zheng, X., Ji, R., Tang, L., Zhang, B., Liu, J., & Tian, Q. (2019b). Multinomial distribution learning for effective neural architecture search. In Proc. of ICCV pp. 1304–1313. Zheng, X., Ji, R., Tang, L., Zhang, B., Liu, J., & Tian, Q. (2019b). Multinomial distribution learning for effective neural architecture search. In Proc. of ICCV pp. 1304–1313.
Zurück zum Zitat Zheng, Z., Zheng, L., & Yang, Y. (2017). A discriminatively learned CNN embedding for person reidentification. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 14(1), 1–20. Zheng, Z., Zheng, L., & Yang, Y. (2017). A discriminatively learned CNN embedding for person reidentification. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 14(1), 1–20.
Zurück zum Zitat Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., & Zou, Y. (2016). Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160. Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., & Zou, Y. (2016). Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:​1606.​06160.
Zurück zum Zitat Zhu, B., Al-Ars, Z., & Hofstee, H. P. (2020). Nasb: Neural architecture search for binary convolutional neural networks. In 2020 International Joint Conference on Neural Networks (IJCNN) pp. 1–8. IEEE. Zhu, B., Al-Ars, Z., & Hofstee, H. P. (2020). Nasb: Neural architecture search for binary convolutional neural networks. In 2020 International Joint Conference on Neural Networks (IJCNN) pp. 1–8. IEEE.
Zurück zum Zitat Zhuo, L., Zhang, B., Chen, H., Yang, L., Chen, C., Zhu, Y., & Doermann, D. (2020). Cp-nas: Child–Parent neural architecture search for binary neural networks. In Proc. of IJCAI pp. 1033–1039. Zhuo, L., Zhang, B., Chen, H., Yang, L., Chen, C., Zhu, Y., & Doermann, D. (2020). Cp-nas: Child–Parent neural architecture search for binary neural networks. In Proc. of IJCAI pp. 1033–1039.
Zurück zum Zitat Zoph, B., & Le, Q. V. (2017). Neural architecture search with reinforcement learning. In Proc. of ICLR pp. 1–16. Zoph, B., & Le, Q. V. (2017). Neural architecture search with reinforcement learning. In Proc. of ICLR pp. 1–16.
Zurück zum Zitat Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning transferable architectures for scalable image recognition. In Proc. of CVPR pp. 8697–8710. Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning transferable architectures for scalable image recognition. In Proc. of CVPR pp. 8697–8710.
Metadaten
Titel
DCP–NAS: Discrepant Child–Parent Neural Architecture Search for 1-bit CNNs
verfasst von
Yanjing Li
Sheng Xu
Xianbin Cao
Li’an Zhuo
Baochang Zhang
Tian Wang
Guodong Guo
Publikationsdatum
29.06.2023
Verlag
Springer US
Erschienen in
International Journal of Computer Vision / Ausgabe 11/2023
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-023-01836-4

Weitere Artikel der Ausgabe 11/2023

International Journal of Computer Vision 11/2023 Zur Ausgabe

Premium Partner