Skip to main content
Erschienen in: Neuroinformatics 2/2024

01.03.2024 | Research

Decentralized Mixed Effects Modeling in COINSTAC

verfasst von: Sunitha Basodi, Rajikha Raja, Harshvardhan Gazula, Javier Tomas Romero, Sandeep Panta, Thomas Maullin-Sapey, Thomas E. Nichols, Vince D. Calhoun

Erschienen in: Neuroinformatics | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Performing group analysis on magnetic resonance imaging (MRI) data with linear mixed-effects (LME) models is challenging due to its large dimensionality and inherent multi-level covariance structure. In addition, as large-scale collaborative projects become commonplace in neuroimaging, data must increasingly be stored and analyzed from different locations. In such settings, substantial overhead can occur in terms of data transfer and coordination between participating research groups. In some cases, data cannot be pooled together due to privacy or regulatory concerns. In this work, we propose a decentralized LME model to perform a large-scale analysis of data from different collaborations without data pooling. This method is efficient as it overcomes the hurdles of data sharing and has lower bandwidth and memory requirements for analysis than the centralized modeling approach. We evaluate our model using features extracted from structural magnetic resonance imaging (sMRI) data. Results highlight gray matter reductions in the temporal lobe/insula and medial frontal regions in schizophrenia, consistent with prior studies. Our analysis also demonstrates that decentralized LME models achieve similar performance compared to the models trained with all the data in one location. We also implement the decentralized LME approach in COINSTAC, an open source, decentralized platform for federating neuroimaging analysis, providing an easy to use tool for dissemination to the neuroimaging community.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aledhari, M., Razzak, R., Parizi, R. M., & Saeed, F. (2020). Federated learning: A survey on enabling technologies, protocols, and applications. IEEE Access, 8, 140699–140725.CrossRefPubMedPubMedCentral Aledhari, M., Razzak, R., Parizi, R. M., & Saeed, F. (2020). Federated learning: A survey on enabling technologies, protocols, and applications. IEEE Access, 8, 140699–140725.CrossRefPubMedPubMedCentral
Zurück zum Zitat Basodi, S., Raja, R., Ray, B., Gazula, H., Sarwate, A. D., Plis, S., Liu, J., Verner, E., & Calhoun, V. D. (2022). Decentralized brain age estimation using mri data. Neuroinformatics, pages 1–10. Basodi, S., Raja, R., Ray, B., Gazula, H., Sarwate, A. D., Plis, S., Liu, J., Verner, E., & Calhoun, V. D. (2022). Decentralized brain age estimation using mri data. Neuroinformatics, pages 1–10.
Zurück zum Zitat Bearden, C. E., & Thompson, P. M. (2017). Emerging global initiatives in neurogenetics: the enhancing neuroimaging genetics through meta-analysis (enigma) consortium. Neuron, 94(2), 232–236.CrossRefPubMedPubMedCentral Bearden, C. E., & Thompson, P. M. (2017). Emerging global initiatives in neurogenetics: the enhancing neuroimaging genetics through meta-analysis (enigma) consortium. Neuron, 94(2), 232–236.CrossRefPubMedPubMedCentral
Zurück zum Zitat Beckmann, C., Jenkinson, M., & Smith, S. (2003a). General multilevel linear modeling for group analysis in fmri. NeuroImage, 20, 1052–63.CrossRefPubMed Beckmann, C., Jenkinson, M., & Smith, S. (2003a). General multilevel linear modeling for group analysis in fmri. NeuroImage, 20, 1052–63.CrossRefPubMed
Zurück zum Zitat Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2003b). General multilevel linear modeling for group analysis in fmri. Neuroimage, 20(2), 1052–1063.CrossRefPubMed Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2003b). General multilevel linear modeling for group analysis in fmri. Neuroimage, 20(2), 1052–1063.CrossRefPubMed
Zurück zum Zitat Bernal-Rusiel, J. L., Greve, D. N., Reuter, M., Fischl, B., & Sabuncu, M. R. (2013). Statistical analysis of longitudinal neuroimage data with linear mixed effects models. NeuroImage, 66, 249–260.CrossRefPubMed Bernal-Rusiel, J. L., Greve, D. N., Reuter, M., Fischl, B., & Sabuncu, M. R. (2013). Statistical analysis of longitudinal neuroimage data with linear mixed effects models. NeuroImage, 66, 249–260.CrossRefPubMed
Zurück zum Zitat Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., Soules, M. E., Teslovich, T., Dellarco, D. V., Garavan, H., et al. (2018). The adolescent brain cognitive development (abcd) study: imaging acquisition across 21 sites. Developmental cognitive neuroscience, 32, 43–54.CrossRefPubMedPubMedCentral Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., Soules, M. E., Teslovich, T., Dellarco, D. V., Garavan, H., et al. (2018). The adolescent brain cognitive development (abcd) study: imaging acquisition across 21 sites. Developmental cognitive neuroscience, 32, 43–54.CrossRefPubMedPubMedCentral
Zurück zum Zitat Chen, G., Saad, Z., Britton, J., Pine, D., & Cox, R. (2013a). Linear mixed-effects modeling approach to fmri group analysis. NeuroImage, 73. Chen, G., Saad, Z., Britton, J., Pine, D., & Cox, R. (2013a). Linear mixed-effects modeling approach to fmri group analysis. NeuroImage, 73.
Zurück zum Zitat Chen, G., Saad, Z. S., Britton, J. C., Pine, D. S., & Cox, R. W. (2013b). Linear mixed-effects modeling approach to fmri group analysis. Neuroimage, 73, 176–190.CrossRefPubMed Chen, G., Saad, Z. S., Britton, J. C., Pine, D. S., & Cox, R. W. (2013b). Linear mixed-effects modeling approach to fmri group analysis. Neuroimage, 73, 176–190.CrossRefPubMed
Zurück zum Zitat Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1–38. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1–38.
Zurück zum Zitat Fonov, V., Evans, A. C., Botteron, K., Almli, C. R., McKinstry, R. C., Collins, D. L., Group, B. D. C., et al. (2011). Unbiased average age-appropriate atlases for pediatric studies. NeuroImage, 54(1), 313–327. Fonov, V., Evans, A. C., Botteron, K., Almli, C. R., McKinstry, R. C., Collins, D. L., Group, B. D. C., et al. (2011). Unbiased average age-appropriate atlases for pediatric studies. NeuroImage, 54(1), 313–327.
Zurück zum Zitat Fonov, V. S., Evans, A. C., McKinstry, R. C., Almli, C., & Collins, D. (2009). Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage, 47, S102.CrossRef Fonov, V. S., Evans, A. C., McKinstry, R. C., Almli, C., & Collins, D. (2009). Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage, 47, S102.CrossRef
Zurück zum Zitat Friston, K., Stephan, K., Lund, T., Morcom, A., & Kiebel, S. (2005). Mixed-effects and fmri studies. NeuroImage, 24, 244–52.CrossRefPubMed Friston, K., Stephan, K., Lund, T., Morcom, A., & Kiebel, S. (2005). Mixed-effects and fmri studies. NeuroImage, 24, 244–52.CrossRefPubMed
Zurück zum Zitat Friston, K. J., Stephan, K. E., Lund, T. E., Morcom, A., & Kiebel, S. (2005). Mixed-effects and fmri studies. Neuroimage, 24(1), 244–252.CrossRefPubMed Friston, K. J., Stephan, K. E., Lund, T. E., Morcom, A., & Kiebel, S. (2005). Mixed-effects and fmri studies. Neuroimage, 24(1), 244–252.CrossRefPubMed
Zurück zum Zitat Gazula, H., Holla, B., Zhang, Z., Xu, J., Verner, E., Kelly, R., Schumann, G., & Calhoun, V. D. (2019). Decentralized multi-site vbm analysis during adolescence shows structural changes linked to age, body mass index, and smoking: A coinstac analysis. bioRxiv, page 846386. Gazula, H., Holla, B., Zhang, Z., Xu, J., Verner, E., Kelly, R., Schumann, G., & Calhoun, V. D. (2019). Decentralized multi-site vbm analysis during adolescence shows structural changes linked to age, body mass index, and smoking: A coinstac analysis. bioRxiv, page 846386.
Zurück zum Zitat Gollub, R. L., Shoemaker, J. M., King, M. D., White, T., Ehrlich, S., Sponheim, S. R., Clark, V. P., Turner, J. A., Mueller, B. A., Magnotta, V., et al. (2013). The mcic collection: a shared repository of multi-modal, multi-site brain image data from a clinical investigation of schizophrenia. Neuroinformatics, 11(3), 367–388.CrossRefPubMedPubMedCentral Gollub, R. L., Shoemaker, J. M., King, M. D., White, T., Ehrlich, S., Sponheim, S. R., Clark, V. P., Turner, J. A., Mueller, B. A., Magnotta, V., et al. (2013). The mcic collection: a shared repository of multi-modal, multi-site brain image data from a clinical investigation of schizophrenia. Neuroinformatics, 11(3), 367–388.CrossRefPubMedPubMedCentral
Zurück zum Zitat Jennrich, R. I., & Schluchter, M. D. (1986). Unbalanced repeated-measures models with structured covariance matrices. Biometrics, 42(4), 805–820.CrossRefPubMed Jennrich, R. I., & Schluchter, M. D. (1986). Unbalanced repeated-measures models with structured covariance matrices. Biometrics, 42(4), 805–820.CrossRefPubMed
Zurück zum Zitat Koerner, T. K., & Zhang, Y. (2017). Application of linear mixed-effects models in human neuroscience research: a comparison with pearson correlation in two auditory electrophysiology studies. Brain sciences, 7(3), 26.CrossRefPubMedPubMedCentral Koerner, T. K., & Zhang, Y. (2017). Application of linear mixed-effects models in human neuroscience research: a comparison with pearson correlation in two auditory electrophysiology studies. Brain sciences, 7(3), 26.CrossRefPubMedPubMedCentral
Zurück zum Zitat Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, pages 963–974. Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, pages 963–974.
Zurück zum Zitat Lange, N. (2003). What can modern statistics offer imaging neuroscience? Statistical methods in medical research, 12(5), 447–469.CrossRefPubMed Lange, N. (2003). What can modern statistics offer imaging neuroscience? Statistical methods in medical research, 12(5), 447–469.CrossRefPubMed
Zurück zum Zitat Larobina, M., & Murino, L. (2014). Medical image file formats. Journal of digital imaging, 27(2), 200–206.CrossRefPubMed Larobina, M., & Murino, L. (2014). Medical image file formats. Journal of digital imaging, 27(2), 200–206.CrossRefPubMed
Zurück zum Zitat Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3), 50–60.CrossRef Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3), 50–60.CrossRef
Zurück zum Zitat Li, X., Morgan, P. S., Ashburner, J., Smith, J., & Rorden, C. (2016). The first step for neuroimaging data analysis: Dicom to nifti conversion. Journal of neuroscience methods, 264, 47–56.CrossRefPubMed Li, X., Morgan, P. S., Ashburner, J., Smith, J., & Rorden, C. (2016). The first step for neuroimaging data analysis: Dicom to nifti conversion. Journal of neuroscience methods, 264, 47–56.CrossRefPubMed
Zurück zum Zitat Lindquist, M. A., Spicer, J., Asllani, I., & Wager, T. D. (2012). Estimating and testing variance components in a multi-level glm. NeuroImage, 59(1), 490–501.CrossRefPubMed Lindquist, M. A., Spicer, J., Asllani, I., & Wager, T. D. (2012). Estimating and testing variance components in a multi-level glm. NeuroImage, 59(1), 490–501.CrossRefPubMed
Zurück zum Zitat Lindstrom, M. J., & Bates, D. M. (1988). Newton-raphson and em algorithms for linear mixed-effects models for repeated-measures data. Journal of the American Statistical Association, 83(404), 1014–1022. Lindstrom, M. J., & Bates, D. M. (1988). Newton-raphson and em algorithms for linear mixed-effects models for repeated-measures data. Journal of the American Statistical Association, 83(404), 1014–1022.
Zurück zum Zitat Madhyastha, T., Peverill, M., Koh, N., McCabe, C., Flournoy, J., Mills, K., King, K., Pfeifer, J., & McLaughlin, K. A. (2018). Current methods and limitations for longitudinal fmri analysis across development. Developmental Cognitive Neuroscience, 33:118 – 128. Methodological Challenges in Developmental Neuroimaging: Contemporary Approaches and Solutions. Madhyastha, T., Peverill, M., Koh, N., McCabe, C., Flournoy, J., Mills, K., King, K., Pfeifer, J., & McLaughlin, K. A. (2018). Current methods and limitations for longitudinal fmri analysis across development. Developmental Cognitive Neuroscience, 33:118 – 128. Methodological Challenges in Developmental Neuroimaging: Contemporary Approaches and Solutions.
Zurück zum Zitat Maullin-Sapey, T., & Nichols, T. (2022). Blmm: Parallelised computing for big linear mixed models. bioRxiv. Maullin-Sapey, T., & Nichols, T. (2022). Blmm: Parallelised computing for big linear mixed models. bioRxiv.
Zurück zum Zitat Maullin-Sapey, T., & Nichols, T. E. (2021). Fisher scoring for crossed factor linear mixed models. Statistics and computing, 31(5), 1–25.CrossRef Maullin-Sapey, T., & Nichols, T. E. (2021). Fisher scoring for crossed factor linear mixed models. Statistics and computing, 31(5), 1–25.CrossRef
Zurück zum Zitat Ming, J., Verner, E., Sarwate, A., Kelly, R., Reed, C., Kahleck, T., Silva, R., Panta, S., Turner, J., Plis, S., et al. (2017). Coinstac: Decentralizing the future of brain imaging analysis. F1000Research, 6. Ming, J., Verner, E., Sarwate, A., Kelly, R., Reed, C., Kahleck, T., Silva, R., Panta, S., Turner, J., Plis, S., et al. (2017). Coinstac: Decentralizing the future of brain imaging analysis. F1000Research, 6.
Zurück zum Zitat Mumford, J. A., & Nichols, T. (2006). Modeling and inference of multisubject fmri data. IEEE Engineering in Medicine and Biology Magazine, 25(2), 42–51.CrossRefPubMed Mumford, J. A., & Nichols, T. (2006). Modeling and inference of multisubject fmri data. IEEE Engineering in Medicine and Biology Magazine, 25(2), 42–51.CrossRefPubMed
Zurück zum Zitat Pinheiro, J., & Bates, D. (2006). Mixed-effects models in S and S-PLUS. Springer science & business media. Pinheiro, J., & Bates, D. (2006). Mixed-effects models in S and S-PLUS. Springer science & business media.
Zurück zum Zitat Plis, S. M., Sarwate, A. D., Wood, D., Dieringer, C., Landis, D., Reed, C., Panta, S. R., Turner, J. A., Shoemaker, J. M., Carter, K. W., et al. (2016). Coinstac: a privacy enabled model and prototype for leveraging and processing decentralized brain imaging data. Frontiers in neuroscience, 10, 365.CrossRefPubMedPubMedCentral Plis, S. M., Sarwate, A. D., Wood, D., Dieringer, C., Landis, D., Reed, C., Panta, S. R., Turner, J. A., Shoemaker, J. M., Carter, K. W., et al. (2016). Coinstac: a privacy enabled model and prototype for leveraging and processing decentralized brain imaging data. Frontiers in neuroscience, 10, 365.CrossRefPubMedPubMedCentral
Zurück zum Zitat Rootes-Murdy, K., Gazula, H., Verner, E., Kelly, R., DeRamus, T., Plis, S., Sarwate, A., Turner, J., & Calhoun, V. (2022). Federated analysis of neuroimaging data: A review of the field. Neuroinformatics, 20(2), 377–390.CrossRefPubMed Rootes-Murdy, K., Gazula, H., Verner, E., Kelly, R., DeRamus, T., Plis, S., Sarwate, A., Turner, J., & Calhoun, V. (2022). Federated analysis of neuroimaging data: A review of the field. Neuroinformatics, 20(2), 377–390.CrossRefPubMed
Zurück zum Zitat Sarwate, A. D., Plis, S. M., Turner, J. A., Arbabshirani, M. R., & Calhoun, V. D. (2014). Sharing privacy-sensitive access to neuroimaging and genetics data: a review and preliminary validation. Frontiers in neuroinformatics, 8, 35.CrossRefPubMedPubMedCentral Sarwate, A. D., Plis, S. M., Turner, J. A., Arbabshirani, M. R., & Calhoun, V. D. (2014). Sharing privacy-sensitive access to neuroimaging and genetics data: a review and preliminary validation. Frontiers in neuroinformatics, 8, 35.CrossRefPubMedPubMedCentral
Zurück zum Zitat Senanayake, N., Podschwadt, R., Takabi, D., Calhoun, V. D., & Plis, S. M. (2022). Neurocrypt: Machine learning over encrypted distributed neuroimaging data. Neuroinformatics, 20(1), 91–108.CrossRefPubMed Senanayake, N., Podschwadt, R., Takabi, D., Calhoun, V. D., & Plis, S. M. (2022). Neurocrypt: Machine learning over encrypted distributed neuroimaging data. Neuroinformatics, 20(1), 91–108.CrossRefPubMed
Zurück zum Zitat Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., Green, J., Landray, M., et al. (2015). Uk biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS medicine, 12(3), e1001779.CrossRefPubMedPubMedCentral Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., Green, J., Landray, M., et al. (2015). Uk biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS medicine, 12(3), e1001779.CrossRefPubMedPubMedCentral
Zurück zum Zitat Szucs, D., & Ioannidis, J. P. (2020). Sample size evolution in neuroimaging research: An evaluation of highly-cited studies (1990–2012) and of latest practices (2017–2018) in high-impact journals. NeuroImage, 221, 117164.CrossRefPubMed Szucs, D., & Ioannidis, J. P. (2020). Sample size evolution in neuroimaging research: An evaluation of highly-cited studies (1990–2012) and of latest practices (2017–2018) in high-impact journals. NeuroImage, 221, 117164.CrossRefPubMed
Zurück zum Zitat White, T., Blok, E., & Calhoun, V. D. (2020). Data sharing and privacy issues in neuroimaging research: Opportunities, obstacles, challenges, and monsters under the bed. Human Brain Mapping. White, T., Blok, E., & Calhoun, V. D. (2020). Data sharing and privacy issues in neuroimaging research: Opportunities, obstacles, challenges, and monsters under the bed. Human Brain Mapping.
Zurück zum Zitat Woolrich, M. W., Behrens, T. E., Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2004). Multilevel linear modelling for fmri group analysis using bayesian inference. NeuroImage, 21(4), 1732–1747.CrossRefPubMed Woolrich, M. W., Behrens, T. E., Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2004). Multilevel linear modelling for fmri group analysis using bayesian inference. NeuroImage, 21(4), 1732–1747.CrossRefPubMed
Zurück zum Zitat Yu, Z., Guindani, M., Grieco, S. F., Chen, L., Holmes, T. C., & Xu, X. (2021). Beyond t test and anova: applications of mixed-effects models for more rigorous statistical analysis in neuroscience research. Neuron. Yu, Z., Guindani, M., Grieco, S. F., Chen, L., Holmes, T. C., & Xu, X. (2021). Beyond t test and anova: applications of mixed-effects models for more rigorous statistical analysis in neuroscience research. Neuron.
Metadaten
Titel
Decentralized Mixed Effects Modeling in COINSTAC
verfasst von
Sunitha Basodi
Rajikha Raja
Harshvardhan Gazula
Javier Tomas Romero
Sandeep Panta
Thomas Maullin-Sapey
Thomas E. Nichols
Vince D. Calhoun
Publikationsdatum
01.03.2024
Verlag
Springer US
Erschienen in
Neuroinformatics / Ausgabe 2/2024
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-024-09657-7

Weitere Artikel der Ausgabe 2/2024

Neuroinformatics 2/2024 Zur Ausgabe

Premium Partner