Skip to main content
Erschienen in: Neuroinformatics 2/2024

25.03.2024 | Research

DeepN4: Learning N4ITK Bias Field Correction for T1-weighted Images

verfasst von: Praitayini Kanakaraj, Tianyuan Yao, Leon Y. Cai, Ho Hin Lee, Nancy R. Newlin, Michael E. Kim, Chenyu Gao, Kimberly R. Pechman, Derek Archer, Timothy Hohman, Angela Jefferson, Lori L. Beason-Held, Susan M. Resnick, Eleftherios Garyfallidis, Adam Anderson, Kurt G. Schilling, Bennett A. Landman, Daniel Moyer, The Alzheimer’s Disease Neuroimaging Initiative (ADNI), The BIOCARD Study Team

Erschienen in: Neuroinformatics | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

T1-weighted (T1w) MRI has low frequency intensity artifacts due to magnetic field inhomogeneities. Removal of these biases in T1w MRI images is a critical preprocessing step to ensure spatially consistent image interpretation. N4ITK bias field correction, the current state-of-the-art, is implemented in such a way that makes it difficult to port between different pipelines and workflows, thus making it hard to reimplement and reproduce results across local, cloud, and edge platforms. Moreover, N4ITK is opaque to optimization before and after its application, meaning that methodological development must work around the inhomogeneity correction step. Given the importance of bias fields correction in structural preprocessing and flexible implementation, we pursue a deep learning approximation / reinterpretation of the N4ITK bias fields correction to create a method which is portable, flexible, and fully differentiable. In this paper, we trained a deep learning network “DeepN4” on eight independent cohorts from 72 different scanners and age ranges with N4ITK-corrected T1w MRI and bias field for supervision in log space. We found that we can closely approximate N4ITK bias fields correction with naïve networks. We evaluate the peak signal to noise ratio (PSNR) in test dataset against the N4ITK corrected images. The median PSNR of corrected images between N4ITK and DeepN4 was 47.96 dB. In addition, we assess the DeepN4 model on eight additional external datasets and show the generalizability of the approach. This study establishes that incompatible N4ITK preprocessing steps can be closely approximated by naïve deep neural networks, facilitating more flexibility. All code and models are released at https://​github.​com/​MASILab/​DeepN4.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., & Kolter, J. Z. (2019). Differentiable convex optimization layers. Advances in neural information processing systems (Vol. 32). Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., & Kolter, J. Z. (2019). Differentiable convex optimization layers. Advances in neural information processing systems (Vol. 32).
Zurück zum Zitat Avants, B. B., Tustison, N., & Song, G. (2009). Advanced normalization tools (ANTS). Insight J, 2(365), 1–35. Avants, B. B., Tustison, N., & Song, G. (2009). Advanced normalization tools (ANTS). Insight J, 2(365), 1–35.
Zurück zum Zitat Axel, L., Costantini, J., & Listerud, J. (1987). Intensity correction in surface-coil MR imaging. AJR American Journal of Roentgenology, 148(2), 418–420.PubMedCrossRef Axel, L., Costantini, J., & Listerud, J. (1987). Intensity correction in surface-coil MR imaging. AJR American Journal of Roentgenology, 148(2), 418–420.PubMedCrossRef
Zurück zum Zitat Bakas, S., Akbari, H., Sotiras, A., et al. (2017). Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Scientific Data, 4(1), 1–13.CrossRef Bakas, S., Akbari, H., Sotiras, A., et al. (2017). Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Scientific Data, 4(1), 1–13.CrossRef
Zurück zum Zitat Beekly, D. L., Ramos, E. M., Lee, W. W., et al. (2007). The National Alzheimer’s Coordinating Center (NACC) database: The uniform data set. Alzheimer Disease & Associated Disorders, 21(3), 249–258.CrossRef Beekly, D. L., Ramos, E. M., Lee, W. W., et al. (2007). The National Alzheimer’s Coordinating Center (NACC) database: The uniform data set. Alzheimer Disease & Associated Disorders, 21(3), 249–258.CrossRef
Zurück zum Zitat Beekly, D. L., Ramos, E. M., van Belle, G., et al. (2004). The national Alzheimer’s coordinating center (NACC) database: An Alzheimer disease database. Alzheimer Disease & Associated Disorders, 18(4), 270–277. Beekly, D. L., Ramos, E. M., van Belle, G., et al. (2004). The national Alzheimer’s coordinating center (NACC) database: An Alzheimer disease database. Alzheimer Disease & Associated Disorders, 18(4), 270–277.
Zurück zum Zitat Besser, L. M., Kukull, W. A., Teylan, M. A., et al. (2018). The revised National Alzheimer’s Coordinating Center’s Neuropathology Form—available data and new analyses. Journal of Neuropathology & Experimental Neurology, 77(8), 717–726.CrossRef Besser, L. M., Kukull, W. A., Teylan, M. A., et al. (2018). The revised National Alzheimer’s Coordinating Center’s Neuropathology Form—available data and new analyses. Journal of Neuropathology & Experimental Neurology, 77(8), 717–726.CrossRef
Zurück zum Zitat Brinkmann, B. H., Manduca, A., & Robb, R. A. (1998). Optimized homomorphic unsharp masking for MR grayscale inhomogeneity correction. IEEE Transactions on Medical Imaging, 17(2), 161–171.PubMedCrossRef Brinkmann, B. H., Manduca, A., & Robb, R. A. (1998). Optimized homomorphic unsharp masking for MR grayscale inhomogeneity correction. IEEE Transactions on Medical Imaging, 17(2), 161–171.PubMedCrossRef
Zurück zum Zitat Chen, C., Qin, C., Qiu, H., Ouyang, C., Wang, S., Chen, L., & Rueckert, D. (2020). Realistic adversarial data augmentation for MR image segmentation. Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part I 23 (pp. 667–677). Springer International Publishing. Chen, C., Qin, C., Qiu, H., Ouyang, C., Wang, S., Chen, L., & Rueckert, D. (2020). Realistic adversarial data augmentation for MR image segmentation. Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part I 23 (pp. 667–677). Springer International Publishing.
Zurück zum Zitat Chuang, K.-H., Wu, P.-H., Li, Z., Fan, K.-H., & Weng, J.-C. (2022). Deep learning network for integrated coil inhomogeneity correction and brain extraction of mixed MRI data. Scientific Reports, 12(1), 8578.PubMedPubMedCentralCrossRef Chuang, K.-H., Wu, P.-H., Li, Z., Fan, K.-H., & Weng, J.-C. (2022). Deep learning network for integrated coil inhomogeneity correction and brain extraction of mixed MRI data. Scientific Reports, 12(1), 8578.PubMedPubMedCentralCrossRef
Zurück zum Zitat Damadian, R. (1971). Tumor detection by nuclear magnetic resonance. Science, 171(3976), 1151–1153.PubMedCrossRef Damadian, R. (1971). Tumor detection by nuclear magnetic resonance. Science, 171(3976), 1151–1153.PubMedCrossRef
Zurück zum Zitat Esteban, O., Markiewicz, C. J., Blair, R. W., et al. (2019). fMRIPrep: A robust preprocessing pipeline for functional MRI. Nature Methods, 16(1), 111–116.PubMedCrossRef Esteban, O., Markiewicz, C. J., Blair, R. W., et al. (2019). fMRIPrep: A robust preprocessing pipeline for functional MRI. Nature Methods, 16(1), 111–116.PubMedCrossRef
Zurück zum Zitat Froeling, M., Tax, C. M., Vos, S. B., Luijten, P. R., & Leemans, A. (2017). “MASSIVE” brain dataset: Multiple acquisitions for standardization of structural imaging validation and evaluation. Magnetic Resonance in Medicine, 77(5), 1797–1809.PubMedCrossRef Froeling, M., Tax, C. M., Vos, S. B., Luijten, P. R., & Leemans, A. (2017). “MASSIVE” brain dataset: Multiple acquisitions for standardization of structural imaging validation and evaluation. Magnetic Resonance in Medicine, 77(5), 1797–1809.PubMedCrossRef
Zurück zum Zitat Gaillochet, M., Tezcan, K. C., & Konukoglu, E. (2020). Joint reconstruction and bias field correction for undersampled MR imaging. International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 44–52). Cham: Springer International Publishing. Gaillochet, M., Tezcan, K. C., & Konukoglu, E. (2020). Joint reconstruction and bias field correction for undersampled MR imaging. International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 44–52). Cham: Springer International Publishing.
Zurück zum Zitat Gispert, J. D., Reig, S., Pascau, J., Vaquero, J. J., García-Barreno, P., & Desco, M. (2004). Method for bias field correction of brain T1-weighted magnetic resonance images minimizing segmentation error. Human Brain Mapping, 22(2), 133–144.PubMedPubMedCentralCrossRef Gispert, J. D., Reig, S., Pascau, J., Vaquero, J. J., García-Barreno, P., & Desco, M. (2004). Method for bias field correction of brain T1-weighted magnetic resonance images minimizing segmentation error. Human Brain Mapping, 22(2), 133–144.PubMedPubMedCentralCrossRef
Zurück zum Zitat Goldfryd, T., Gordon, S., & Raviv, T. R. (2021). Deep semi-supervised bias field correction of Mr images (pp. 1836–1840). IEEE. Goldfryd, T., Gordon, S., & Raviv, T. R. (2021). Deep semi-supervised bias field correction of Mr images (pp. 1836–1840). IEEE.
Zurück zum Zitat Gorgolewski, K., Burns, C. D., Madison, C., et al. (2011). Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python. Frontiers in Neuroinformatics, 5, 13.PubMedPubMedCentralCrossRef Gorgolewski, K., Burns, C. D., Madison, C., et al. (2011). Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python. Frontiers in Neuroinformatics, 5, 13.PubMedPubMedCentralCrossRef
Zurück zum Zitat Harms, M. P., Somerville, L. H., Ances, B. M., et al. (2018). Extending the Human Connectome Project across ages: Imaging protocols for the Lifespan Development and Aging projects. NeuroImage, 183, 972–984.PubMedCrossRef Harms, M. P., Somerville, L. H., Ances, B. M., et al. (2018). Extending the Human Connectome Project across ages: Imaging protocols for the Lifespan Development and Aging projects. NeuroImage, 183, 972–984.PubMedCrossRef
Zurück zum Zitat Huo, Y., Xu, Z., Xiong, Y., et al. (2019). 3D whole brain segmentation using spatially localized atlas network tiles. NeuroImage, 194, 105–119.PubMedCrossRef Huo, Y., Xu, Z., Xiong, Y., et al. (2019). 3D whole brain segmentation using spatially localized atlas network tiles. NeuroImage, 194, 105–119.PubMedCrossRef
Zurück zum Zitat Jack, C. R., Jr., Bernstein, M. A., Fox, N. C., et al. (2008). The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, 27(4), 685–691.CrossRef Jack, C. R., Jr., Bernstein, M. A., Fox, N. C., et al. (2008). The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, 27(4), 685–691.CrossRef
Zurück zum Zitat Jefferson, A. L., Gifford, K. A., Acosta, L. M. Y., et al. (2016). The Vanderbilt Memory & Aging Project: Study design and baseline cohort overview. Journal of Alzheimer’s Disease, 52(2), 539–559.PubMedCrossRef Jefferson, A. L., Gifford, K. A., Acosta, L. M. Y., et al. (2016). The Vanderbilt Memory & Aging Project: Study design and baseline cohort overview. Journal of Alzheimer’s Disease, 52(2), 539–559.PubMedCrossRef
Zurück zum Zitat Johnson, K. A. (2016). Basic proton MR imaging: tissue signal characteristics. Harvard Medical School. Archived from the original on, 03-05. Johnson, K. A. (2016). Basic proton MR imaging: tissue signal characteristics. Harvard Medical School. Archived from the original on, 03-05.
Zurück zum Zitat LaMontagne, P. J., Benzinger, T. L., Morris, J. C., et al. (2019). OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease. MedRxiv, 2019.12. 13.19014902. LaMontagne, P. J., Benzinger, T. L., Morris, J. C., et al. (2019). OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease. MedRxiv, 2019.12. 13.19014902.
Zurück zum Zitat Landman, B. A., Huang, A. J., Gifford, A., et al. (2011). Multi-parametric neuroimaging reproducibility: A 3-T resource study. NeuroImage, 54(4), 2854–2866.PubMedCrossRef Landman, B. A., Huang, A. J., Gifford, A., et al. (2011). Multi-parametric neuroimaging reproducibility: A 3-T resource study. NeuroImage, 54(4), 2854–2866.PubMedCrossRef
Zurück zum Zitat Mascalchi, M., Marzi, C., Giannelli, M., et al. (2018). Histogram analysis of DTI-derived indices reveals pontocerebellar degeneration and its progression in SCA2. PLoS ONE, 13(7), e0200258.PubMedPubMedCentralCrossRef Mascalchi, M., Marzi, C., Giannelli, M., et al. (2018). Histogram analysis of DTI-derived indices reveals pontocerebellar degeneration and its progression in SCA2. PLoS ONE, 13(7), e0200258.PubMedPubMedCentralCrossRef
Zurück zum Zitat Mihara, H., Iriguchi, N., & Ueno, S. (1998). A method of RF inhomogeneity correction in MR imaging. Magnetic Resonance Materials in Physics, Biology and Medicine, 7(2), 115–120.CrossRef Mihara, H., Iriguchi, N., & Ueno, S. (1998). A method of RF inhomogeneity correction in MR imaging. Magnetic Resonance Materials in Physics, Biology and Medicine, 7(2), 115–120.CrossRef
Zurück zum Zitat Miller, N., Liu, Y., Krivochenitser, R., & Rokers, B. (2019). Linking neural and clinical measures of glaucoma with diffusion magnetic resonance imaging (dMRI). PLoS ONE, 14(5), e0217011.PubMedPubMedCentralCrossRef Miller, N., Liu, Y., Krivochenitser, R., & Rokers, B. (2019). Linking neural and clinical measures of glaucoma with diffusion magnetic resonance imaging (dMRI). PLoS ONE, 14(5), e0217011.PubMedPubMedCentralCrossRef
Zurück zum Zitat Narayana, P., Brey, W., Kulkarni, M., & Sievenpiper, C. (1988). Compensation for surface coil sensitivity variation in magnetic resonance imaging. Magnetic Resonance Imaging, 6(3), 271–274.PubMedCrossRef Narayana, P., Brey, W., Kulkarni, M., & Sievenpiper, C. (1988). Compensation for surface coil sensitivity variation in magnetic resonance imaging. Magnetic Resonance Imaging, 6(3), 271–274.PubMedCrossRef
Zurück zum Zitat Payares-Garcia, D., Mateu, J., & Schick, W. (2023). NeuroNorm: An R package to standardize multiple structural MRI. Neurocomputing, 550, 126493.CrossRef Payares-Garcia, D., Mateu, J., & Schick, W. (2023). NeuroNorm: An R package to standardize multiple structural MRI. Neurocomputing, 550, 126493.CrossRef
Zurück zum Zitat Pineda, L., Fan, T., Monge, M., et al. (2022). Theseus: A library for differentiable nonlinear optimization. Advances in Neural Information Processing Systems, 35, 3801–3818. Pineda, L., Fan, T., Monge, M., et al. (2022). Theseus: A library for differentiable nonlinear optimization. Advances in Neural Information Processing Systems, 35, 3801–3818.
Zurück zum Zitat Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18 (pp. 234–241). Springer International Publishing. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18 (pp. 234–241). Springer International Publishing.
Zurück zum Zitat Sacktor, N., Soldan, A., Grega, M., Farrington, L., Cai, Q., Wang, M. C., & Albert, M. (2017). The BIOCARD index: a summary measure to predict onset of mild cognitive impairment (P1. 095). AAN Enterprises.CrossRef Sacktor, N., Soldan, A., Grega, M., Farrington, L., Cai, Q., Wang, M. C., & Albert, M. (2017). The BIOCARD index: a summary measure to predict onset of mild cognitive impairment (P1. 095). AAN Enterprises.CrossRef
Zurück zum Zitat Schiffmann, R., & van der Knaap, M. S. (2009). Invited article: An MRI-based approach to the diagnosis of white matter disorders. Neurology, 72(8), 750–759.PubMedPubMedCentralCrossRef Schiffmann, R., & van der Knaap, M. S. (2009). Invited article: An MRI-based approach to the diagnosis of white matter disorders. Neurology, 72(8), 750–759.PubMedPubMedCentralCrossRef
Zurück zum Zitat Schilling, K. G., Blaber, J., Hansen, C., et al. (2020). Distortion correction of diffusion weighted MRI without reverse phase-encoding scans or field-maps. PLoS ONE, 15(7), e0236418.PubMedPubMedCentralCrossRef Schilling, K. G., Blaber, J., Hansen, C., et al. (2020). Distortion correction of diffusion weighted MRI without reverse phase-encoding scans or field-maps. PLoS ONE, 15(7), e0236418.PubMedPubMedCentralCrossRef
Zurück zum Zitat Shock, N. W. (1984). Normal human aging: The Baltimore longitudinal study of aging (No. 84). US Department of Health and Human Services, Public Health Service, National Institutes of Health, National Institute on Aging, Gerontology Research Center. Shock, N. W. (1984). Normal human aging: The Baltimore longitudinal study of aging (No. 84). US Department of Health and Human Services, Public Health Service, National Institutes of Health, National Institute on Aging, Gerontology Research Center.
Zurück zum Zitat Simkó, A., Löfstedt, T., Garpebring, A., Nyholm, T., & Jonsson, J. (2022). MRI bias field correction with an implicitly trained CNN. International Conference on Medical Imaging with Deep Learning (pp. 1125–1138). PMLR. Simkó, A., Löfstedt, T., Garpebring, A., Nyholm, T., & Jonsson, J. (2022). MRI bias field correction with an implicitly trained CNN. International Conference on Medical Imaging with Deep Learning (pp. 1125–1138). PMLR.
Zurück zum Zitat Simmons, A., Tofts, P. S., Barker, G. J., & Arridge, S. R. (1994). Sources of intensity nonuniformity in spin echo images at 1.5 T. Magnetic Resonance in Medicine, 32(1), 121–128.PubMedCrossRef Simmons, A., Tofts, P. S., Barker, G. J., & Arridge, S. R. (1994). Sources of intensity nonuniformity in spin echo images at 1.5 T. Magnetic Resonance in Medicine, 32(1), 121–128.PubMedCrossRef
Zurück zum Zitat Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1), 87–97.PubMedCrossRef Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1), 87–97.PubMedCrossRef
Zurück zum Zitat Song, S., Zheng, Y., & He, Y. (2017). A review of methods for bias correction in medical images. Biomedical Engineering Review, 1(1). Song, S., Zheng, Y., & He, Y. (2017). A review of methods for bias correction in medical images. Biomedical Engineering Review, 1(1).
Zurück zum Zitat Sridhara, S. N., Akrami, H., Krishnamurthy, V., & Joshi, A. A. (2021). Bias field correction in 3D-MRIs using convolutional autoencoders. Medical Imaging 2021: Image Processing (Vol. 11596, pp. 671–676). SPIE. Sridhara, S. N., Akrami, H., Krishnamurthy, V., & Joshi, A. A. (2021). Bias field correction in 3D-MRIs using convolutional autoencoders. Medical Imaging 2021: Image Processing (Vol. 11596, pp. 671–676). SPIE.
Zurück zum Zitat Tournier, J. D., Calamante, F., & Connelly, A. (2012). MRtrix: Diffusion tractography in crossing fiber regions. International Journal of Imaging Systems and Technology, 22(1), 53–66.CrossRef Tournier, J. D., Calamante, F., & Connelly, A. (2012). MRtrix: Diffusion tractography in crossing fiber regions. International Journal of Imaging Systems and Technology, 22(1), 53–66.CrossRef
Zurück zum Zitat Tustison, N. J., Avants, B. B., Cook, P. A., et al. (2010). N4ITK: Improved N3 bias correction. IEEE Transactions on Medical Imaging, 29(6), 1310–1320.PubMedPubMedCentralCrossRef Tustison, N. J., Avants, B. B., Cook, P. A., et al. (2010). N4ITK: Improved N3 bias correction. IEEE Transactions on Medical Imaging, 29(6), 1310–1320.PubMedPubMedCentralCrossRef
Zurück zum Zitat Tustison, N. J., Cook, P. A., Holbrook, A. J., et al. (2021). The ANTsX ecosystem for quantitative biological and medical imaging. Scientific Reports, 11(1), 9068.PubMedPubMedCentralCrossRef Tustison, N. J., Cook, P. A., Holbrook, A. J., et al. (2021). The ANTsX ecosystem for quantitative biological and medical imaging. Scientific Reports, 11(1), 9068.PubMedPubMedCentralCrossRef
Zurück zum Zitat Van Essen, D. C., Smith, S. M., Barch, D. M., et al. (2013). The WU-Minn human connectome project: An overview. NeuroImage, 80, 62–79.PubMedCrossRef Van Essen, D. C., Smith, S. M., Barch, D. M., et al. (2013). The WU-Minn human connectome project: An overview. NeuroImage, 80, 62–79.PubMedCrossRef
Zurück zum Zitat Vovk, U., Pernus, F., & Likar, B. (2007). A review of methods for correction of intensity inhomogeneity in MRI. IEEE Transactions on Medical Imaging, 26(3), 405–421.PubMedCrossRef Vovk, U., Pernus, F., & Likar, B. (2007). A review of methods for correction of intensity inhomogeneity in MRI. IEEE Transactions on Medical Imaging, 26(3), 405–421.PubMedCrossRef
Zurück zum Zitat Wan, F., Smedby, Ö., & Wang, C. (2019). Simultaneous MR knee image segmentation and bias field correction using deep learning and partial convolution. Medical Imaging 2019: Image Processing (Vol. 10949, pp. 61–67). SPIE. Wan, F., Smedby, Ö., & Wang, C. (2019). Simultaneous MR knee image segmentation and bias field correction using deep learning and partial convolution. Medical Imaging 2019: Image Processing (Vol. 10949, pp. 61–67). SPIE.
Zurück zum Zitat Weintraub, S., Besser, L., Dodge, H. H., et al. (2018). Version 3 of the Alzheimer Disease Centers’ neuropsychological test battery in the Uniform Data Set (UDS). Alzheimer Disease and Associated Disorders, 32(1), 10.PubMedPubMedCentralCrossRef Weintraub, S., Besser, L., Dodge, H. H., et al. (2018). Version 3 of the Alzheimer Disease Centers’ neuropsychological test battery in the Uniform Data Set (UDS). Alzheimer Disease and Associated Disorders, 32(1), 10.PubMedPubMedCentralCrossRef
Zurück zum Zitat Weintraub, S., Salmon, D., Mercaldo, N., et al. (2009). The Alzheimer’s disease centers’ uniform data set (UDS): The neuropsychological test battery. Alzheimer Disease and Associated Disorders, 23(2), 91.PubMedPubMedCentralCrossRef Weintraub, S., Salmon, D., Mercaldo, N., et al. (2009). The Alzheimer’s disease centers’ uniform data set (UDS): The neuropsychological test battery. Alzheimer Disease and Associated Disorders, 23(2), 91.PubMedPubMedCentralCrossRef
Zurück zum Zitat Xu, Y., Wang, Y., Hu, S., & Du, Y. (2022). Deep convolutional neural networks for bias field correction of brain magnetic resonance images. The Journal of Supercomputing, 78(16), 17943–17968.CrossRef Xu, Y., Wang, Y., Hu, S., & Du, Y. (2022). Deep convolutional neural networks for bias field correction of brain magnetic resonance images. The Journal of Supercomputing, 78(16), 17943–17968.CrossRef
Zurück zum Zitat Yaniv, Z., Lowekamp, B. C., Johnson, H. J., & Beare, R. (2018). SimpleITK image-analysis notebooks: A collaborative environment for education and reproducible research. Journal of Digital Imaging, 31(3), 290–303.PubMedCrossRef Yaniv, Z., Lowekamp, B. C., Johnson, H. J., & Beare, R. (2018). SimpleITK image-analysis notebooks: A collaborative environment for education and reproducible research. Journal of Digital Imaging, 31(3), 290–303.PubMedCrossRef
Metadaten
Titel
DeepN4: Learning N4ITK Bias Field Correction for T1-weighted Images
verfasst von
Praitayini Kanakaraj
Tianyuan Yao
Leon Y. Cai
Ho Hin Lee
Nancy R. Newlin
Michael E. Kim
Chenyu Gao
Kimberly R. Pechman
Derek Archer
Timothy Hohman
Angela Jefferson
Lori L. Beason-Held
Susan M. Resnick
Eleftherios Garyfallidis
Adam Anderson
Kurt G. Schilling
Bennett A. Landman
Daniel Moyer
The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
The BIOCARD Study Team
Publikationsdatum
25.03.2024
Verlag
Springer US
Erschienen in
Neuroinformatics / Ausgabe 2/2024
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-024-09655-9

Weitere Artikel der Ausgabe 2/2024

Neuroinformatics 2/2024 Zur Ausgabe

Premium Partner