Skip to main content
Erschienen in: Theory and Decision 2/2023

20.08.2022

Decompositions of inequality measures from the perspective of the Shapley–Owen value

verfasst von: Rodrigue Tido Takeng, Arnold Cedrick Soh Voutsa, Kévin Fourrey

Erschienen in: Theory and Decision | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article proposes three new decompositions of inequality measures, drawn from the framework of cooperative game theory. It allows the impact of players’ interactions, rather than players’ contributions to inequality, to be taken into consideration. These innovative approaches are especially suited for the study of income inequality when the income has a hierarchical structure: the income is composed of several primary sources, with the particularity that each of them is also composed of secondary sources. We revisit the Shapley–Owen value that quantifies the importance of each of these secondary sources in the overall income inequality. Our main contribution is to decompose this importance into two parts: the pure marginal contribution of the considered source and a weighted sum of pairwise interactions. We then provide an axiomatic characterization of each additive interaction decomposable (AID) coalitional value considered in this paper. We give an application of these decompositions in the context of inequality theory.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Which is well known as a generalization of the Shapley Value.
 
2
Notice that, while \({\mathfrak {B}}\) is a coalitional structure over \({\mathfrak {U}}\), \(\pi {\mathfrak {B}}\) may not be a coalitional structure over \({\mathfrak {U}}\).
 
3
In that case, \({\mathfrak {B}}^N_{\pi }\) is the coalitional structure induced by \({\mathfrak {B}}_\pi\) over N, and \(\pi S_j\cap \pi S_{j}=\emptyset\) whenever \(j\ne k\).
 
4
For more detail, see Sect. 4.
 
5
M being the set of representatives of the structural coalitions in \({\mathfrak {B}}^N\).
 
6
In the literature, the notion of coalitional semivalue is also known as mixed modified semivalues (see Giménez & Puente, 2015). The semivalue induced by value \(\phi\) plays a role among the structural coalitions whereas the distribution among the players of \(S_{m_i}\) is obtained according to the semivalue induced by value \(\varphi\). Note that the two semivalues can be either equal (e.g., Shapley value for the Owen–Shapley value and Banzhaf value for the Owen-Banzhaf value) or different [e.g., Banzhaf value and Shapley value for the symmetric coalitional Banzhaf value (see Alonso-Meijide & Fiestras-Janeiro, 2002)].
 
7
A player i is veto in a game v if \(v(S)=0\) whenever \(i\notin S\).
 
8
A game v is monotonic if \(v(L)\le v(T)\) whenever \(L\subset T.\)
 
9
A game \(v\in \Gamma (N)\) is an additive game if, for every player \(i\in N\), there exists \(a_i\in {\mathbb {R}}\), such that \(v(T)=\sum _{i\in N}a_i\) for every \(T\subseteq N\).
 
10
Casajus and Huettner (2018) called the naive solution of player i.
 
11
Marichal et al. (2007) called the external generalized value of coalition T.
 
12
If the family of real numbers \(\{f^{r}(M,P)\}_{P\subseteq M\backslash \{\ell ,r\}}\) with \(f^{r}(M,P)=f(m,p)\) is a probability distribution over \(2^{M\backslash \{\ell ,r\}}\), then the second part of Eq. (3) can be interpreted as  a weighted arithmetic mean of pairwise interactions of \(S_{\ell}\) with the other structural coalitions.
 
13
If we have \(\sum _{p=0}^{m-2}\sum _{k=0}^{s_{m_i}\!-1}\left( ^{s_{m_i}\!-1}_{~~k}\right) \times \left( ^{m-2}_{~p}\right) \times f(m,p)\cdot g(s_{m_i},k)=1\), \(g(s_{m_i},k)\ge 0\) with \({k=0,\dots ,s_{m_i}}\) and \(f(m,p)\ge 0\) with \({p=0,\dots ,m\!-\!2}\), then \(\Psi _i\left( v,{\mathfrak {B}}\right)\) can also be interpreted as the difference between a weighted sum of marginal contributions of \(i\) and a weighted arithmetic mean of pairwise interactions of \(i\) with the structural coalitions \(S_{\ell}\neq S_{m_i}\).
 
14
If \(\Psi ^{{\mathrm{CS}}}=\Psi ^{{\mathrm{Sh}}}\) or \(\Psi ^{{\mathrm{Sh}}}=\Psi ^{{\mathrm{Bz}}},\) then \(\sum _{p=0}^{m-2}\sum _{k=0}^{s_{m_i}\!-1}\left( ^{s_{m_i}\!-1}_{~~k}\right) \times \left( ^{m-2}_{~p}\right) \times 2f(m,p)\cdot g(s_{m_i},k)=1\). \(\Psi _i\left( v,{\mathfrak {B}}\right)\) can also be interpreted as the difference between a weighted sum of marginal contributions of i and the half of a weighted arithmetic mean of pairwise interactions of \(i\) with the structural coalitions \(S_{\ell}\neq S_{m_i}\).
 
15
Albizuri and Zarzuelo (2004) (Theorem 5) showed that the Shapley–Owen value is the only coalitional value on \((v,{\mathfrak {B}}) \in G(N)\) that satisfies efficiency, rearrangement, and additivity.
 
16
The second part of the decomposition can also be interpreted as the half of a weighted arithmetic mean of  pairwise interactions of \(i\) with the other players \(j\neq i\).
 
17
Other axioms of the inequality measure could be integrated here, such as the strict Schur-convexity, for instance. However, we do not impose more restrictions on the inequality function as our decompositions can be applied with any inequality measure.
 
18
See Chantreuil and Trannoy (2011) for the presentation of other games.
 
19
Note that all considered sources have nonnegative values. If this is not the case then, one must apply transformations to the distribution to have nonnegative values or take an inequality measure suitable for such a situation, such as the Gini coefficient developed by Raffinetti et al. (2015).
 
20
These observations are also verified with a null game, where \(\lambda =0\).
 
21
We consider the Quotient game where structural coalitions are viewed as players (Alonso-Meijide et al., 2007).
 
22
The Gini index, noted G, for n individuals ordered from the lowest income to the highest income is denoted by: \(G = \frac{2}{n} \sum _{i=1}^{n} (p_i - L_i)\), where \(p_i\) and \(L_i\) are the respective cumulative share of population and the cumulative share of income.
 
Literatur
Zurück zum Zitat Albizuri, M. J., & Zarzuelo, J. M. (2004). On coalitional semivalues. Games and Economic Behavior, 49, 221–243.CrossRef Albizuri, M. J., & Zarzuelo, J. M. (2004). On coalitional semivalues. Games and Economic Behavior, 49, 221–243.CrossRef
Zurück zum Zitat Alonso-Meijide, J. M., Carreras, F., Fiestras-Janeiro, M. G., & Owen, G. (2007). A comparative axiomatic characterization of the Banzhaf–Owen coalitional value. Decision Support Systems, 43, 701–712.CrossRef Alonso-Meijide, J. M., Carreras, F., Fiestras-Janeiro, M. G., & Owen, G. (2007). A comparative axiomatic characterization of the Banzhaf–Owen coalitional value. Decision Support Systems, 43, 701–712.CrossRef
Zurück zum Zitat Alonso-Meijide, J. M., & Fiestras-Janeiro, G. M. (2002). Modification of the Banzhaf value for games with a coalition structure. Annals of Operation Research, 109, 213–227.CrossRef Alonso-Meijide, J. M., & Fiestras-Janeiro, G. M. (2002). Modification of the Banzhaf value for games with a coalition structure. Annals of Operation Research, 109, 213–227.CrossRef
Zurück zum Zitat Auvray, C., & Trannoy, A. (1992). Décomposition par source de l’inégalité des revenus à l’aide de la valeur de Shapley. Sfax. Auvray, C., & Trannoy, A. (1992). Décomposition par source de l’inégalité des revenus à l’aide de la valeur de Shapley. Sfax.
Zurück zum Zitat Casajus, A., & Huettner, F. (2018). Decomposition of solutions and the Shapley value. Games Economic Behavior, 108, 37–48.CrossRef Casajus, A., & Huettner, F. (2018). Decomposition of solutions and the Shapley value. Games Economic Behavior, 108, 37–48.CrossRef
Zurück zum Zitat Chameni, N. (2006a). Linking Gini to Entropy: Measuring inequality by an interpersonal class of indices. Economics Bulletin, 4(5), 1–9. Chameni, N. (2006a). Linking Gini to Entropy: Measuring inequality by an interpersonal class of indices. Economics Bulletin, 4(5), 1–9.
Zurück zum Zitat Chameni, N. (2006b). A note on the decomposition of the coefficient of variation squared: Comparing entropy and Dagum’s methods. Economics Bulletin, 4(8), 1–8. Chameni, N. (2006b). A note on the decomposition of the coefficient of variation squared: Comparing entropy and Dagum’s methods. Economics Bulletin, 4(8), 1–8.
Zurück zum Zitat Chantreuil, F., Courtin, S., Fourrey, K., & Lebon, I. (2019). A note on the decomposability of inequality measures. Social Choice and Welfare, 54, 1–16. Chantreuil, F., Courtin, S., Fourrey, K., & Lebon, I. (2019). A note on the decomposability of inequality measures. Social Choice and Welfare, 54, 1–16.
Zurück zum Zitat Chantreuil, F., & Trannoy, A. (2011). Inequality decomposition values. Annals of Economics and Statistics, 101(102), 6–29. Chantreuil, F., & Trannoy, A. (2011). Inequality decomposition values. Annals of Economics and Statistics, 101(102), 6–29.
Zurück zum Zitat Chantreuil, F., & Trannoy, A. (2013). Inequality decomposition values: The trade-off between marginality and efficiency. The Journal of Economic Inequality, 11(1), 83–98.CrossRef Chantreuil, F., & Trannoy, A. (2013). Inequality decomposition values: The trade-off between marginality and efficiency. The Journal of Economic Inequality, 11(1), 83–98.CrossRef
Zurück zum Zitat Dagum, C. (1997). A new approach to the decomposition of the Gini income inequality ratio. Empirical Economics, 22, 515–531.CrossRef Dagum, C. (1997). A new approach to the decomposition of the Gini income inequality ratio. Empirical Economics, 22, 515–531.CrossRef
Zurück zum Zitat Dubey, P., Neyman, A., & Weber, R. J. (1981). Value theory without efficiency. Mathematics of Operations Research, 6, 122–128.CrossRef Dubey, P., Neyman, A., & Weber, R. J. (1981). Value theory without efficiency. Mathematics of Operations Research, 6, 122–128.CrossRef
Zurück zum Zitat Ebert, U. (2010). The decomposition of inequality reconsidered: Weakly decomposable measures. Mathematical Social Sciences, 60(2), 94–103.CrossRef Ebert, U. (2010). The decomposition of inequality reconsidered: Weakly decomposable measures. Mathematical Social Sciences, 60(2), 94–103.CrossRef
Zurück zum Zitat Fujimoto, K., Kojadinovic, I., & Marichal, J.-L. (2006). Axiomatic characterizations of probabilistic and cardinal-probabilistic interaction indices. Games and Economic Behavior, 55, 72–99.CrossRef Fujimoto, K., Kojadinovic, I., & Marichal, J.-L. (2006). Axiomatic characterizations of probabilistic and cardinal-probabilistic interaction indices. Games and Economic Behavior, 55, 72–99.CrossRef
Zurück zum Zitat Giménez, J. M., & Puente, M. A. (2015). A method to calculate generalized mixed modified semivalues: Application to the Catalan parliament (legislature 2012–2016). TOP, 23, 669–684.CrossRef Giménez, J. M., & Puente, M. A. (2015). A method to calculate generalized mixed modified semivalues: Application to the Catalan parliament (legislature 2012–2016). TOP, 23, 669–684.CrossRef
Zurück zum Zitat Grabisch, M., & Roubens, M. (1999). An axiomatic approach to the concept of interaction among players in cooperative games. International Journal of Game Theory, 28, 547–565.CrossRef Grabisch, M., & Roubens, M. (1999). An axiomatic approach to the concept of interaction among players in cooperative games. International Journal of Game Theory, 28, 547–565.CrossRef
Zurück zum Zitat Harsanyi, J. C. (1959). A bargaining model for cooperative n-person games. In R. D. Luce & A. W. Tucker (Eds.), Contribution to the theory of games IV (Vol. 2, pp. 325–355). Princeton University Press. Harsanyi, J. C. (1959). A bargaining model for cooperative n-person games. In R. D. Luce & A. W. Tucker (Eds.), Contribution to the theory of games IV (Vol. 2, pp. 325–355). Princeton University Press.
Zurück zum Zitat Jenkins, S. P., & Van Kerm, P. (2006). Trends in income inequality, pro-poor income growth, and income mobility. Oxford Economic Papers, 58(3), 531–548.CrossRef Jenkins, S. P., & Van Kerm, P. (2006). Trends in income inequality, pro-poor income growth, and income mobility. Oxford Economic Papers, 58(3), 531–548.CrossRef
Zurück zum Zitat Kojadinovic, I. (2005). An axiomatic approach to the measurement of the amount of interaction among criteria or players. Fuzzy Sets and Systems, 152, 417–435.CrossRef Kojadinovic, I. (2005). An axiomatic approach to the measurement of the amount of interaction among criteria or players. Fuzzy Sets and Systems, 152, 417–435.CrossRef
Zurück zum Zitat Lerman, R. I., & Yitzhaki, S. (1985). Income inequality effects by income source: A new approach and applications to the United-States. The Review of Economics and Statistics, 67(1), 151.CrossRef Lerman, R. I., & Yitzhaki, S. (1985). Income inequality effects by income source: A new approach and applications to the United-States. The Review of Economics and Statistics, 67(1), 151.CrossRef
Zurück zum Zitat Marichal, J. L., Kojadinovic, I., & Fujimoto, K. (2007). Axiomatic characterizations of generalized values. Discrete Applied Mathematics, 155, 26–43.CrossRef Marichal, J. L., Kojadinovic, I., & Fujimoto, K. (2007). Axiomatic characterizations of generalized values. Discrete Applied Mathematics, 155, 26–43.CrossRef
Zurück zum Zitat Mornet, P., Zoli, C., Mussard, S., Sadefo-Kamdem, J., Seyte, F., & Terraza, M. (2013). The (\(\alpha,\beta\))-multi-level \(\alpha\)-Gini decomposition with an illustration to income inequality in France in 2005. Economic Modelling, 35, 944–963.CrossRef Mornet, P., Zoli, C., Mussard, S., Sadefo-Kamdem, J., Seyte, F., & Terraza, M. (2013). The (\(\alpha,\beta\))-multi-level \(\alpha\)-Gini decomposition with an illustration to income inequality in France in 2005. Economic Modelling, 35, 944–963.CrossRef
Zurück zum Zitat Murofushi, T., & Soneda, S. (1993). Techniques for reading fuzzy measures (iii): interaction index. In: 9th Fuzzy System Symposium pp. 693–696. Saporo: Japan, In Japanese. Murofushi, T., & Soneda, S. (1993). Techniques for reading fuzzy measures (iii): interaction index. In: 9th Fuzzy System Symposium pp. 693–696. Saporo: Japan, In Japanese.
Zurück zum Zitat Mussard, S., Pi Alperin, M. N., Seyte, F., & Terraza, M. (2006). Extensions of Dagum’s Gini decomposition. Statistica & Applicazioni, 4(2), 5–30. Mussard, S., Pi Alperin, M. N., Seyte, F., & Terraza, M. (2006). Extensions of Dagum’s Gini decomposition. Statistica & Applicazioni, 4(2), 5–30.
Zurück zum Zitat Mussard, S., & Savard, L. (2012). The Gini multi-decomposition and the role of Gini’s transvariation: Application to partial trade liberalization in the Philippines. Applied Economics, 44(10), 1235–1249.CrossRef Mussard, S., & Savard, L. (2012). The Gini multi-decomposition and the role of Gini’s transvariation: Application to partial trade liberalization in the Philippines. Applied Economics, 44(10), 1235–1249.CrossRef
Zurück zum Zitat Mussini, M. (2013). On decomposing inequality and poverty changes over time: A multi-dimensional decomposition. Economic Modelling, 33, 8–18.CrossRef Mussini, M. (2013). On decomposing inequality and poverty changes over time: A multi-dimensional decomposition. Economic Modelling, 33, 8–18.CrossRef
Zurück zum Zitat Owen, G. (1975). Multilinear extensions and the Banzhaf value. Naval Research Logistics Quarterly, 22, 741–750.CrossRef Owen, G. (1975). Multilinear extensions and the Banzhaf value. Naval Research Logistics Quarterly, 22, 741–750.CrossRef
Zurück zum Zitat Owen, G. (1977). Values of games with a priori unions. In R. Hein & O. Moeschlin (Eds.), Essays in mathematical economics and game theory. Springer. Owen, G. (1977). Values of games with a priori unions. In R. Hein & O. Moeschlin (Eds.), Essays in mathematical economics and game theory. Springer.
Zurück zum Zitat Owen, G. (1981). Modification of the Banzhaf–Coleman index for games with a priori unions. In M. J. Holler (Ed.), Power, voting, and voting power. Physica-Verlag. Owen, G. (1981). Modification of the Banzhaf–Coleman index for games with a priori unions. In M. J. Holler (Ed.), Power, voting, and voting power. Physica-Verlag.
Zurück zum Zitat Raffinetti, E., Siletti, E., & Vernizzi, A. (2015). On the Gini coefficient normalization when incomes with negative values are considered. Statistical Methods & Applications, 24(3), 507–521.CrossRef Raffinetti, E., Siletti, E., & Vernizzi, A. (2015). On the Gini coefficient normalization when incomes with negative values are considered. Statistical Methods & Applications, 24(3), 507–521.CrossRef
Zurück zum Zitat Shapley, L. S. (1953). A value for n-person games. Annals of mathematics studies 28. In H. W. Kuhn & A. W. Tucker (Eds.), Contribution to the theory of games (Vol. II, pp. 307–317). Princeton University Press. Shapley, L. S. (1953). A value for n-person games. Annals of mathematics studies 28. In H. W. Kuhn & A. W. Tucker (Eds.), Contribution to the theory of games (Vol. II, pp. 307–317). Princeton University Press.
Zurück zum Zitat Shorrocks, A. F. (1982). Inequality decomposition by factor components. Econometrica, 50(1), 193.CrossRef Shorrocks, A. F. (1982). Inequality decomposition by factor components. Econometrica, 50(1), 193.CrossRef
Zurück zum Zitat Shorrocks, A. F. (2013). Decomposition procedures for distributional analysis: A unified framework based on the Shapley value. The Journal of Economic Inequality, 11(1), 99–126.CrossRef Shorrocks, A. F. (2013). Decomposition procedures for distributional analysis: A unified framework based on the Shapley value. The Journal of Economic Inequality, 11(1), 99–126.CrossRef
Zurück zum Zitat Theil, H. (1967). Economics and information theory. North-Holland. Theil, H. (1967). Economics and information theory. North-Holland.
Metadaten
Titel
Decompositions of inequality measures from the perspective of the Shapley–Owen value
verfasst von
Rodrigue Tido Takeng
Arnold Cedrick Soh Voutsa
Kévin Fourrey
Publikationsdatum
20.08.2022
Verlag
Springer US
Erschienen in
Theory and Decision / Ausgabe 2/2023
Print ISSN: 0040-5833
Elektronische ISSN: 1573-7187
DOI
https://doi.org/10.1007/s11238-022-09893-w

Weitere Artikel der Ausgabe 2/2023

Theory and Decision 2/2023 Zur Ausgabe

Premium Partner