Skip to main content
Erschienen in: Neural Processing Letters 2/2022

09.01.2022

Deep Active Autoencoders for Outlier Detection

verfasst von: Jin Ning, Leiting Chen, Chuan Zhou, Yang Wen

Erschienen in: Neural Processing Letters | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The variety and lack of labels for outliers make it difficult to establish a fixed outlier model, which facilitates unsupervised algorithms for mainstream outlier detection. However, unsupervised methods rely on the assumption that there are no outliers within the dataset or that the outliers are sporadically distributed, thus leading to unsatisfactory detection accuracy within large-scale, high-dimensional datasets, especially image datasets. In view of this, the present study proposes a novel outlier detection method, called Active Autoencoder (AAE), which can be used to break through the bottleneck of unsupervised learning. AAE improves the performance of autoencoder through use of influence-based active learning in combination with a novel way to change sample weights by expansion-shrinkage operator. Experiments on benchmark and fundus image datasets demonstrate that the proposed method achieves superior performance compared to alternatives.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Domingues R, Filippone M, Michiardi P, Zouaoui J (2018) A comparative evaluation of outlier detection algorithms: experiments and analyses. Pattern Recognit 74:406–421CrossRef Domingues R, Filippone M, Michiardi P, Zouaoui J (2018) A comparative evaluation of outlier detection algorithms: experiments and analyses. Pattern Recognit 74:406–421CrossRef
2.
Zurück zum Zitat Kwon D, Kim H, Kim J, Suh SC, Kim I, Kim KJ (2019) A survey of deep learning-based network anomaly detection. Clust Comput 22(1):949–96CrossRef Kwon D, Kim H, Kim J, Suh SC, Kim I, Kim KJ (2019) A survey of deep learning-based network anomaly detection. Clust Comput 22(1):949–96CrossRef
3.
Zurück zum Zitat Yu X, Lu YH, Gao Q (2021) Pipeline image diagnosis algorithm based on neural immune ensemble learning. Int J Press Vessels Pip 189:104249CrossRef Yu X, Lu YH, Gao Q (2021) Pipeline image diagnosis algorithm based on neural immune ensemble learning. Int J Press Vessels Pip 189:104249CrossRef
4.
Zurück zum Zitat Xiao Y, Zijie Z (2020) Infrared image extraction algorithm based on adaptive growth immune field. Neural Process Lett 51(3):2575–2587CrossRef Xiao Y, Zijie Z (2020) Infrared image extraction algorithm based on adaptive growth immune field. Neural Process Lett 51(3):2575–2587CrossRef
5.
Zurück zum Zitat Aggarwal CC (2016) Outlier analysis, 2nd edition. Springer, Cham Aggarwal CC (2016) Outlier analysis, 2nd edition. Springer, Cham
6.
Zurück zum Zitat Sabokrou M, Khalooei M, Fathy M, Adeli E (2018) Adversarially learned one-class classifier for novelty detection. In: Proceedings of the IEEE cnference on computer vision and pattern recognition, pp. 3379–3388 Sabokrou M, Khalooei M, Fathy M, Adeli E (2018) Adversarially learned one-class classifier for novelty detection. In: Proceedings of the IEEE cnference on computer vision and pattern recognition, pp. 3379–3388
7.
Zurück zum Zitat Perera P, Patel VM (2019) Learning deep features for one-class classification. IEEE Trans Image Process 28(11):5450–5463MathSciNetCrossRef Perera P, Patel VM (2019) Learning deep features for one-class classification. IEEE Trans Image Process 28(11):5450–5463MathSciNetCrossRef
8.
Zurück zum Zitat Kieu T, Yang B, Guo C, Jensen CS (2019) Outlier detection for time series with recurrent autoencoder ensembles. In: IJCAI, pp 2725–2732 Kieu T, Yang B, Guo C, Jensen CS (2019) Outlier detection for time series with recurrent autoencoder ensembles. In: IJCAI, pp 2725–2732
9.
Zurück zum Zitat Li X, Chen M, Wang Q (2018) Self-tuned discrimination-aware method for unsupervised feature selection. IEEE Trans Neural Netw Learn Syst 30(8):2275–2284MathSciNetCrossRef Li X, Chen M, Wang Q (2018) Self-tuned discrimination-aware method for unsupervised feature selection. IEEE Trans Neural Netw Learn Syst 30(8):2275–2284MathSciNetCrossRef
10.
Zurück zum Zitat Liu X, Zhu X, Li M, Wang L, Zhu E, Liu T, Kloft M, Shen D, Yin J, Gao W (2019) Multiple kernel \( k \) k-means with incomplete kernels. IEEE Trans Pattern Anal Mach Intell 42(5):1191–1204 Liu X, Zhu X, Li M, Wang L, Zhu E, Liu T, Kloft M, Shen D, Yin J, Gao W (2019) Multiple kernel \( k \) k-means with incomplete kernels. IEEE Trans Pattern Anal Mach Intell 42(5):1191–1204
11.
Zurück zum Zitat Breunig MM, Kriegel HP, Ng RT, Sander J (2000) Lof: identifying density-based local outliers. In: ACM sigmod record, vol. 29, ACM, pp. 93–104 Breunig MM, Kriegel HP, Ng RT, Sander J (2000) Lof: identifying density-based local outliers. In: ACM sigmod record, vol. 29, ACM, pp. 93–104
12.
Zurück zum Zitat He K, Cao X, Shi Y, Nie D, Gao Y, Shen D (2018) Pelvic organ segmentation using distinctive curve guided fully convolutional networks. IEEE Trans Med Imaging 38(2):585–595CrossRef He K, Cao X, Shi Y, Nie D, Gao Y, Shen D (2018) Pelvic organ segmentation using distinctive curve guided fully convolutional networks. IEEE Trans Med Imaging 38(2):585–595CrossRef
13.
Zurück zum Zitat Yuan Y, Li X, Wang Q, Nie F (2021) A semi-supervised learning algorithm via adaptive Laplacian graph. Neurocomputing 426:162–173CrossRef Yuan Y, Li X, Wang Q, Nie F (2021) A semi-supervised learning algorithm via adaptive Laplacian graph. Neurocomputing 426:162–173CrossRef
14.
Zurück zum Zitat Pang G, Cao L, Chen L, Liu H (2018) Learning representations of ultrahigh-dimensional data for random distance-based outlier detection. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data ining, pp. 2041–2050 Pang G, Cao L, Chen L, Liu H (2018) Learning representations of ultrahigh-dimensional data for random distance-based outlier detection. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data ining, pp. 2041–2050
15.
Zurück zum Zitat Pang G, Shen C, Hengel A van den (2019) Deep anomaly detection with deviation networks. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 353–362 Pang G, Shen C, Hengel A van den (2019) Deep anomaly detection with deviation networks. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 353–362
16.
17.
Zurück zum Zitat Ha J, Seok S, Lee J-S (2014) Robust outlier detection using the instability factor. Knowl-Based Syst 63:15–23CrossRef Ha J, Seok S, Lee J-S (2014) Robust outlier detection using the instability factor. Knowl-Based Syst 63:15–23CrossRef
18.
Zurück zum Zitat Huang J, Zhu Q, Yang L, Feng J (2016) A non-parameter outlier detection algorithm based on natural neighbor. Knowl-Based Syst 92:71–77CrossRef Huang J, Zhu Q, Yang L, Feng J (2016) A non-parameter outlier detection algorithm based on natural neighbor. Knowl-Based Syst 92:71–77CrossRef
19.
Zurück zum Zitat Hoi SC, Jin R, Zhu J, Lyu MR (2006) Batch mode active learning and its application to medical image classification. In: Proceedings of the 23rd international conference on Machine learning, pp. 417–424 Hoi SC, Jin R, Zhu J, Lyu MR (2006) Batch mode active learning and its application to medical image classification. In: Proceedings of the 23rd international conference on Machine learning, pp. 417–424
20.
Zurück zum Zitat Xiong S, Azimi J, Fern XZ (2013) Active learning of constraints for semi-supervised clustering. IEEE Trans Knowl Data Eng 26(1):43–54CrossRef Xiong S, Azimi J, Fern XZ (2013) Active learning of constraints for semi-supervised clustering. IEEE Trans Knowl Data Eng 26(1):43–54CrossRef
21.
Zurück zum Zitat Xiong C, Johnson DM, Corso JJ (2016) Active clustering with model-based uncertainty reduction. IEEE Trans Pattern Anal Mach Intell 39(1):5–17CrossRef Xiong C, Johnson DM, Corso JJ (2016) Active clustering with model-based uncertainty reduction. IEEE Trans Pattern Anal Mach Intell 39(1):5–17CrossRef
22.
Zurück zum Zitat Cai W, Zhang M, Zhang Y (2016) Batch mode active learning for regression with expected model change. IEEE Trans Neural Netw Learn Syst 28(7):1668–1681MathSciNetCrossRef Cai W, Zhang M, Zhang Y (2016) Batch mode active learning for regression with expected model change. IEEE Trans Neural Netw Learn Syst 28(7):1668–1681MathSciNetCrossRef
23.
Zurück zum Zitat Yin C, Qian B, Cao S, Li X, Wei J, Zheng Q, Davidson I (2017) Deep similarity-based batch mode active learning with exploration-exploitation. In: 2017 IEEE international conference on data mining (ICDM), IEEE, pp. 575–584 Yin C, Qian B, Cao S, Li X, Wei J, Zheng Q, Davidson I (2017) Deep similarity-based batch mode active learning with exploration-exploitation. In: 2017 IEEE international conference on data mining (ICDM), IEEE, pp. 575–584
24.
Zurück zum Zitat Fu W, Wang M, Hao S, Wu X (2018) Scalable active learning by approximated error reduction. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 1396–1405 Fu W, Wang M, Hao S, Wu X (2018) Scalable active learning by approximated error reduction. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 1396–1405
25.
Zurück zum Zitat Li Y, Wang Y, Yu D-J, Ye N, Hu P, Zhao R (2019) Ascent: active supervision for semi-supervised learning. IEEE Trans Knowl Data Eng 32(5):868–882CrossRef Li Y, Wang Y, Yu D-J, Ye N, Hu P, Zhao R (2019) Ascent: active supervision for semi-supervised learning. IEEE Trans Knowl Data Eng 32(5):868–882CrossRef
26.
Zurück zum Zitat Huang E-C, Pao H-K, Lee Y-J (2017) Big active learning. In: 2017 IEEE international conference on big data (Big Data), IEEE, pp 94–101 Huang E-C, Pao H-K, Lee Y-J (2017) Big active learning. In: 2017 IEEE international conference on big data (Big Data), IEEE, pp 94–101
27.
Zurück zum Zitat Huang J, Ling CX (2005) Using AUC and accuracy in evaluating learning algorithms. IEEE Trans Knowl Data Eng 17(3):299–310CrossRef Huang J, Ling CX (2005) Using AUC and accuracy in evaluating learning algorithms. IEEE Trans Knowl Data Eng 17(3):299–310CrossRef
28.
Zurück zum Zitat Liu FT, Ting KM, Zhou Z-H (2008) Isolation forest. In: 2008 Eighth IEEE international conference on data mining, IEEE, pp 413–422 Liu FT, Ting KM, Zhou Z-H (2008) Isolation forest. In: 2008 Eighth IEEE international conference on data mining, IEEE, pp 413–422
29.
Zurück zum Zitat Zhou C, Paffenroth RC (2017) Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 665–674 Zhou C, Paffenroth RC (2017) Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 665–674
30.
Zurück zum Zitat Liu Y, Li Z, Zhou C, Jiang Y, Sun J, Wang M, He X (2019) Generative adversarial active learning for unsupervised outlier detection. IEEE Trans Knowl Data Eng Liu Y, Li Z, Zhou C, Jiang Y, Sun J, Wang M, He X (2019) Generative adversarial active learning for unsupervised outlier detection. IEEE Trans Knowl Data Eng
Metadaten
Titel
Deep Active Autoencoders for Outlier Detection
verfasst von
Jin Ning
Leiting Chen
Chuan Zhou
Yang Wen
Publikationsdatum
09.01.2022
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 2/2022
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-021-10687-4

Weitere Artikel der Ausgabe 2/2022

Neural Processing Letters 2/2022 Zur Ausgabe

Neuer Inhalt