Skip to main content
Erschienen in: The Journal of Supercomputing 1/2024

25.06.2023

Deep Gaussian convolutional neural network model in classification of cassava diseases using spectral data

verfasst von: Emmanuel Ahishakiye, Waweru Mwangi, Petronilla Muriithi, Fredrick Kanobe, Godliver Owomugisha, Danison Taremwa, Lenard Nkalubo

Erschienen in: The Journal of Supercomputing | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Early disease identification in crops is critical for food security, especially in Sub-Saharan Africa. To identify cassava diseases, professionals visually score the plants by looking for disease indicators on the leaves which is notoriously subjective. Automating the detection and classification of crop diseases could help professionals diagnose diseases more accurately and allow farmers in remote locations to monitor their crops without the help of specialists. Machine learning algorithms have been used in the early detection and classification of crop diseases. However, traditional machine learning algorithms are not calibrated even though they have high accuracy. The ability to provide well-calibrated posterior distributions is one of the most appealing properties of Gaussian processes. Motivated by the current developments in the field of Gaussian Processes, this study proposed a deep Gaussian convolutional neural network model for the detection and classification of cassava diseases using spectral data. The proposed model uses a hybrid kernel function that is the product of a rational quadratic kernel and a squared exponential kernel. Experimental results revealed that our proposed hybrid kernel function performed better in terms of accuracy of 90.1% when compared to both the squared exponential kernel with an accuracy of 88.0% and the rational quadratic kernel with an accuracy of 88.5%. In our future work, we propose to integrate the proposed model with an ensemble of pretrained models, a move that may help to improve the model's performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
11.
Zurück zum Zitat Pleiss G, Gardner JR, Weinberger KQ, Wilson AG (2018) Constant-time predictive distributions for Gaussian processes. In: 35th International Conference on Machine Learning ICML 2018 9:6575–6584 Pleiss G, Gardner JR, Weinberger KQ, Wilson AG (2018) Constant-time predictive distributions for Gaussian processes. In: 35th International Conference on Machine Learning ICML 2018 9:6575–6584
13.
Zurück zum Zitat Frank HT (2020) Gaussian process models for computer vision. California State Polytechnic University, Pomona Frank HT (2020) Gaussian process models for computer vision. California State Polytechnic University, Pomona
17.
Zurück zum Zitat Kumar V, Singh V, Srijith PK, Damianou A (2018) Deep Gaussian processes with convolutional kernels. arXiv 2018. Kumar V, Singh V, Srijith PK, Damianou A (2018) Deep Gaussian processes with convolutional kernels. arXiv 2018.
18.
Zurück zum Zitat Salimbeni H, Deisenroth MP (2017) Doubly stochastic variational inference for deep Gaussian processes. Adv Neural Inf Process Syst 2017:4589–4600 Salimbeni H, Deisenroth MP (2017) Doubly stochastic variational inference for deep Gaussian processes. Adv Neural Inf Process Syst 2017:4589–4600
20.
Zurück zum Zitat Dutordoir V, van der Wilk M, Artemev A, Hensman J (2019) Bayesian Image Classification with Deep Convolutional Gaussian Processes. In: Proceedings of the 23rd international Conference on Artificial Intelligence and Statistics (AISTATS) 2020, Palermo, Italy, 2019, vol 108 (online). http://arxiv.org/abs/1902.05888 Dutordoir V, van der Wilk M, Artemev A, Hensman J (2019) Bayesian Image Classification with Deep Convolutional Gaussian Processes. In: Proceedings of the 23rd international Conference on Artificial Intelligence and Statistics (AISTATS) 2020, Palermo, Italy, 2019, vol 108 (online). http://​arxiv.​org/​abs/​1902.​05888
22.
Zurück zum Zitat Dutordoir V, Salimbeni H, Deisenroth MP, Hensman J (2018) Gaussian process conditional density estimation. Adv Neural Inf Process Syst 2018:2385–2395 Dutordoir V, Salimbeni H, Deisenroth MP, Hensman J (2018) Gaussian process conditional density estimation. Adv Neural Inf Process Syst 2018:2385–2395
23.
Zurück zum Zitat Tran GL, Cunningham JP, Bonilla EV, Michiardi P, Filippone M (2019) Calibrating deep convolutional Gaussian processes. In: Proceedings of 22nd International Conference on Artificial Intelligence Stattics 2019, vol 89, Naha, Okinawa, Japan Tran GL, Cunningham JP, Bonilla EV, Michiardi P, Filippone M (2019) Calibrating deep convolutional Gaussian processes. In: Proceedings of 22nd International Conference on Artificial Intelligence Stattics 2019, vol 89, Naha, Okinawa, Japan
24.
Zurück zum Zitat Wagle N, Frew EW (2017) Forward adaptive transfer using Gaussian processes. J Aerosp Inf Syst 14(4):1 Wagle N, Frew EW (2017) Forward adaptive transfer using Gaussian processes. J Aerosp Inf Syst 14(4):1
27.
Zurück zum Zitat Yu K, Chu W (2009) Gaussian process models for link analysis and transfer learning. In: 20th Proceedings of 2007 Conference Advances in Neural Information Processing Systems, pp 1–8 Yu K, Chu W (2009) Gaussian process models for link analysis and transfer learning. In: 20th Proceedings of 2007 Conference Advances in Neural Information Processing Systems, pp 1–8
28.
Zurück zum Zitat Bosch N, Achterhold J, Leal-Taixé L, Stückler J (2020) Planning from images with deep latent Gaussian process dynamics. arXiv, 2020 Bosch N, Achterhold J, Leal-Taixé L, Stückler J (2020) Planning from images with deep latent Gaussian process dynamics. arXiv, 2020
30.
Zurück zum Zitat Snelson E, Ghahramani Z (2005) Sparse Gaussian processes using pseudo-inputs. Adv Neural Inf Process Syst 1:1257–1264 Snelson E, Ghahramani Z (2005) Sparse Gaussian processes using pseudo-inputs. Adv Neural Inf Process Syst 1:1257–1264
31.
Zurück zum Zitat Murphy KP (2012) Machine learning: a probabilistic perspective. The MIT Press, London Murphy KP (2012) Machine learning: a probabilistic perspective. The MIT Press, London
32.
Zurück zum Zitat Bishop CM (2006) Pattern recognition and machine learning, 1st edn. Springer, New York Bishop CM (2006) Pattern recognition and machine learning, 1st edn. Springer, New York
33.
Zurück zum Zitat Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning, vol 14, no. 2. The MIT Press, London Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning, vol 14, no. 2. The MIT Press, London
34.
Zurück zum Zitat Zhang B (2020) Gaussian processes based transfer learning for online multiple-person tracking and building blocks for deep learning. Brunel University London Zhang B (2020) Gaussian processes based transfer learning for online multiple-person tracking and building blocks for deep learning. Brunel University London
38.
Zurück zum Zitat Van Der Wilk M, Rasmussen CE, Hensman J (2017) Convolutional Gaussian Processes. Nips 1:1–10 Van Der Wilk M, Rasmussen CE, Hensman J (2017) Convolutional Gaussian Processes. Nips 1:1–10
39.
Zurück zum Zitat Seeger M (2004) Gaussian processes for machine learning. Int J Neural Syst 14(2):69CrossRef Seeger M (2004) Gaussian processes for machine learning. Int J Neural Syst 14(2):69CrossRef
40.
Zurück zum Zitat Damianou AC, Lawrence ND (2013) Deep Gaussian processes. J Mach Learn Res 31:207–215 Damianou AC, Lawrence ND (2013) Deep Gaussian processes. J Mach Learn Res 31:207–215
41.
Zurück zum Zitat Bui TD, Hernández-Lobato JM, Hernández-Lobato D, Li Y, Turner RE (2016) Deep Gaussian processes for regression using approximate expectation propagation. 33rd International Conference on Machine Learning ICML 2016, vol 3, pp 2187–2208. https://doi.org/10.17863/CAM.21348 Bui TD, Hernández-Lobato JM, Hernández-Lobato D, Li Y, Turner RE (2016) Deep Gaussian processes for regression using approximate expectation propagation. 33rd International Conference on Machine Learning ICML 2016, vol 3, pp 2187–2208. https://​doi.​org/​10.​17863/​CAM.​21348
44.
Zurück zum Zitat Wilson AG, Hu Z, Salakhutdinov R, Xing EP (2016) Deep kernel learning. In: Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016, vol 51, pp 370–378 Wilson AG, Hu Z, Salakhutdinov R, Xing EP (2016) Deep kernel learning. In: Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016, vol 51, pp 370–378
45.
Zurück zum Zitat Růžička J, Koza J, Tumpach J, Pitra Z, Holeňa M (2021) Combining Gaussian processes with neural networks for active learning in optimization. CEUR Workshop Proc 3079:105–120 Růžička J, Koza J, Tumpach J, Pitra Z, Holeňa M (2021) Combining Gaussian processes with neural networks for active learning in optimization. CEUR Workshop Proc 3079:105–120
46.
Zurück zum Zitat Murphy KP (2022) Probabilistic machine learning: advanced topics. The MIT Press Cambridge, Massachusetts Murphy KP (2022) Probabilistic machine learning: advanced topics. The MIT Press Cambridge, Massachusetts
47.
Zurück zum Zitat Duvenaud DK (2014) Automatic model construction with Gaussian processes Duvenaud DK (2014) Automatic model construction with Gaussian processes
52.
Zurück zum Zitat Capizzi G, Lo Sciuto G, Napoli C, Tramontana E, Woźniak M (2016) A novel neural networks-based texture image processing algorithm for orange defects classification. Int J Comput Sci Appl 13(2):45–60 Capizzi G, Lo Sciuto G, Napoli C, Tramontana E, Woźniak M (2016) A novel neural networks-based texture image processing algorithm for orange defects classification. Int J Comput Sci Appl 13(2):45–60
54.
Zurück zum Zitat Almadhor A, Rauf HT, Lali MIU, Damaševičius R, Alouffi B, Alharbi A (2021) Ai-driven framework for recognition of guava plant diseases through machine learning from DSLR camera sensor based high-resolution imagery. Sensors 21(11):1–19. https://doi.org/10.3390/s21113830CrossRef Almadhor A, Rauf HT, Lali MIU, Damaševičius R, Alouffi B, Alharbi A (2021) Ai-driven framework for recognition of guava plant diseases through machine learning from DSLR camera sensor based high-resolution imagery. Sensors 21(11):1–19. https://​doi.​org/​10.​3390/​s21113830CrossRef
60.
Zurück zum Zitat Matthews DG et al (2017) GPflow: a Gaussian process library using TensorFlow. J Mach Learn Res 18(40):1–6MathSciNet Matthews DG et al (2017) GPflow: a Gaussian process library using TensorFlow. J Mach Learn Res 18(40):1–6MathSciNet
63.
Zurück zum Zitat Kingma DP, Ba JL (2015) Adam: a method for stochastic optimization. 3rd International Conference on Learning Representations. ICLR 2015—Conference Track Proceedings, pp 1–15 Kingma DP, Ba JL (2015) Adam: a method for stochastic optimization. 3rd International Conference on Learning Representations. ICLR 2015—Conference Track Proceedings, pp 1–15
Metadaten
Titel
Deep Gaussian convolutional neural network model in classification of cassava diseases using spectral data
verfasst von
Emmanuel Ahishakiye
Waweru Mwangi
Petronilla Muriithi
Fredrick Kanobe
Godliver Owomugisha
Danison Taremwa
Lenard Nkalubo
Publikationsdatum
25.06.2023
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 1/2024
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-023-05498-4

Weitere Artikel der Ausgabe 1/2024

The Journal of Supercomputing 1/2024 Zur Ausgabe

Premium Partner