Skip to main content

2019 | OriginalPaper | Buchkapitel

10. Deep Learning and Deep Knowledge Representation of fMRI Data

verfasst von : Nikola K. Kasabov

Erschienen in: Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The chapter presents first background information about functional magnetic-resonance imaging (fMRI) and then introduces methods for deep learning and deep knowledge representation from fMRI data using brain-inspired SNN. These methods are applied to develop specific methods for fMRI data analysis related to cognitive processes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.C. DeCharms, Application of real-time fMRI. Nat. Rev. Neurosci. 9, 720–729 (2008)CrossRef R.C. DeCharms, Application of real-time fMRI. Nat. Rev. Neurosci. 9, 720–729 (2008)CrossRef
2.
Zurück zum Zitat J.P. Mitchell, C.N. Macrae, M.R. Banaji, Encoding specific effects of social cognition on the neural correlates of subsequent memory. J. Neurosci. 24(21), 4912–4917 (2004)CrossRef J.P. Mitchell, C.N. Macrae, M.R. Banaji, Encoding specific effects of social cognition on the neural correlates of subsequent memory. J. Neurosci. 24(21), 4912–4917 (2004)CrossRef
5.
Zurück zum Zitat S. Ogawa, T.M. Lee, A.R. Kay, D.W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. 87(24), 9868–9872 (1990)CrossRef S. Ogawa, T.M. Lee, A.R. Kay, D.W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. 87(24), 9868–9872 (1990)CrossRef
6.
Zurück zum Zitat J.V. Haxby, M.I. Gobbini, M.L. Furey, A. Ishai, J.L. Schouten, P. Pietrini, Distributed and overlapping representation of faces and objects in ventral temporal cortex. Science 293(5539), 2425–2430 (2001)CrossRef J.V. Haxby, M.I. Gobbini, M.L. Furey, A. Ishai, J.L. Schouten, P. Pietrini, Distributed and overlapping representation of faces and objects in ventral temporal cortex. Science 293(5539), 2425–2430 (2001)CrossRef
9.
Zurück zum Zitat M.K. Carroll, G.A. Cecchi, I. Rish, R. Garg, A.R. Rao, Prediction and interpretation of distributed neural activity with sparse models. NeuroImage 44(1), 112–122 (2009)CrossRef M.K. Carroll, G.A. Cecchi, I. Rish, R. Garg, A.R. Rao, Prediction and interpretation of distributed neural activity with sparse models. NeuroImage 44(1), 112–122 (2009)CrossRef
11.
Zurück zum Zitat D.D. Cox, R.L. Savoy, Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 19(2), 261–270 (2003)CrossRef D.D. Cox, R.L. Savoy, Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 19(2), 261–270 (2003)CrossRef
12.
Zurück zum Zitat Y. Kamitani, F. Tong, Decoding the visual and subjective contents of the human brain. Nat. Neurosci. 8(5), 679–685 (2005)CrossRef Y. Kamitani, F. Tong, Decoding the visual and subjective contents of the human brain. Nat. Neurosci. 8(5), 679–685 (2005)CrossRef
16.
Zurück zum Zitat I. Rustandi, in Classifying Multiple-Subject fMRI Data Using the Hierarchical Gaussian Naïve Bayes Classifier. 13th Conference on Human Brain Mapping (2007a), pp. 4–5 I. Rustandi, in Classifying Multiple-Subject fMRI Data Using the Hierarchical Gaussian Naïve Bayes Classifier. 13th Conference on Human Brain Mapping (2007a), pp. 4–5
17.
Zurück zum Zitat I. Rustandi, in Hierarchical Gaussian Naive Bayes Classifier for Multiple-Subject fMRI Data. Submitted to AISTATS, (1), 2–4 (2007b) I. Rustandi, in Hierarchical Gaussian Naive Bayes Classifier for Multiple-Subject fMRI Data. Submitted to AISTATS, (1), 2–4 (2007b)
18.
Zurück zum Zitat S.M. Polyn, G.J. Detre, S. Takerkart, V.S. Natu, M.S. Benharrosh, B.D. Singer, J.D. Cohen, J.V. Haxby, K.A. Norman, A Matlab-based toolbox to facilitate multi-voxel pattern classification of fMRI data (2005) S.M. Polyn, G.J. Detre, S. Takerkart, V.S. Natu, M.S. Benharrosh, B.D. Singer, J.D. Cohen, J.V. Haxby, K.A. Norman, A Matlab-based toolbox to facilitate multi-voxel pattern classification of fMRI data (2005)
19.
Zurück zum Zitat Y. Fan, D. Shen, C. Davatzikos, in Detecting Cognitive States from fMRI Images by Machine Learning and Multivariate Classification. In Conference on Computer Vision and Pattern Recognition Workshop 2006 (IEEE, 2006), pp. 89–89. https://doi.org/10.1109/cvprw.2006.64 Y. Fan, D. Shen, C. Davatzikos, in Detecting Cognitive States from fMRI Images by Machine Learning and Multivariate Classification. In Conference on Computer Vision and Pattern Recognition Workshop 2006 (IEEE, 2006), pp. 89–89. https://​doi.​org/​10.​1109/​cvprw.​2006.​64
24.
Zurück zum Zitat T. Schmah, G.E. Hinton, R.S. Zemel, S.L. Small, S. Strother, Generative versus discriminative training of RBMs for classification of fMRI images, in Advances in Neural Information Processing Systems, vol. 21, ed. by D. Koller, D. Schuurmans, Y. Bengio, L. Bottou (MIT Press, Cambridge, MA, 2009), pp. 1409–1416 T. Schmah, G.E. Hinton, R.S. Zemel, S.L. Small, S. Strother, Generative versus discriminative training of RBMs for classification of fMRI images, in Advances in Neural Information Processing Systems, vol. 21, ed. by D. Koller, D. Schuurmans, Y. Bengio, L. Bottou (MIT Press, Cambridge, MA, 2009), pp. 1409–1416
26.
Zurück zum Zitat N. Mørch, L. Hansen, S. Strother, C. Svarer, D. Rottenberg, B. Lautrup, in Nonlinear vs. linear models in functional neuroimaging: Learning curves and generalization crossover. Proceedings of the 15th international conference on information processing in medical imaging, volume 1230 of Lecture Notes in Computer Science (Springer, 1997) pp. 259–270 N. Mørch, L. Hansen, S. Strother, C. Svarer, D. Rottenberg, B. Lautrup, in Nonlinear vs. linear models in functional neuroimaging: Learning curves and generalization crossover. Proceedings of the 15th international conference on information processing in medical imaging, volume 1230 of Lecture Notes in Computer Science (Springer, 1997) pp. 259–270
32.
Zurück zum Zitat M. Åberg, L. Löken, J. Wessberg, in An Evolutionary Approach to Multivariate Feature Selection for fMRI Pattern Analysis (2008) M. Åberg, L. Löken, J. Wessberg, in An Evolutionary Approach to Multivariate Feature Selection for fMRI Pattern Analysis (2008)
33.
Zurück zum Zitat T. Niiniskorpi, M. Bj, J. Wessberg, in Particle Swarm Feature Selection for fMRI Pattern Classification. In BIOSIGNALS (2009), pp. 279–284 T. Niiniskorpi, M. Bj, J. Wessberg, in Particle Swarm Feature Selection for fMRI Pattern Classification. In BIOSIGNALS (2009), pp. 279–284
36.
Zurück zum Zitat S. Ryali, K. Supekar, D.A. Abrams, V. Menon, Sparse logistic regression for whole-brain classification of fMRI data. NeuroImage 51(2), 752–764 (2010)CrossRef S. Ryali, K. Supekar, D.A. Abrams, V. Menon, Sparse logistic regression for whole-brain classification of fMRI data. NeuroImage 51(2), 752–764 (2010)CrossRef
38.
Zurück zum Zitat B. Ng, A. Vahdat, G. Hamarneh, R. Abugharbieh, Generalized Sparse Classifiers for Decoding Cognitive States in fMRI. Machine Learning in Medical Imaging (Springer, 2010), pp. 108–115 B. Ng, A. Vahdat, G. Hamarneh, R. Abugharbieh, Generalized Sparse Classifiers for Decoding Cognitive States in fMRI. Machine Learning in Medical Imaging (Springer, 2010), pp. 108–115
40.
Zurück zum Zitat N. Kasabov, M. Doborjeh, Z. Doborjeh, Mapping, learning, visualization, classification, and understanding of fMRI data in the NeuCube evolving spatiotemporal data machine of spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. https://doi.org/10.1109/tnnls.2016.2612890, Manuscript Number: TNNLS-2016-P-6356, 2016 N. Kasabov, M. Doborjeh, Z. Doborjeh, Mapping, learning, visualization, classification, and understanding of fMRI data in the NeuCube evolving spatiotemporal data machine of spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. https://​doi.​org/​10.​1109/​tnnls.​2016.​2612890, Manuscript Number: TNNLS-2016-P-6356, 2016
41.
Zurück zum Zitat R. Brette et al., Simulation of networks of spiking neurons: a review of tools and strategies. J. Comput. Neurosci. 23(3), 349–398 (2007)MathSciNetCrossRef R. Brette et al., Simulation of networks of spiking neurons: a review of tools and strategies. J. Comput. Neurosci. 23(3), 349–398 (2007)MathSciNetCrossRef
42.
43.
Zurück zum Zitat N. Scott, N. Kasabov, G. Indiveri, in NeuCube Neuromorphic Framework for Spatio-Temporal Brain Data and Its Python Implementation. Proc. ICONIP. Springer LNCS, vol 8228 (2013), pp. 78–84 N. Scott, N. Kasabov, G. Indiveri, in NeuCube Neuromorphic Framework for Spatio-Temporal Brain Data and Its Python Implementation. Proc. ICONIP. Springer LNCS, vol 8228 (2013), pp. 78–84
44.
Zurück zum Zitat S.B. Furber, F. Galluppi, S. Temple, L.A. Plana, The SpiNNaker project. Proc. IEEE 102(5), 652–665 (2014)CrossRef S.B. Furber, F. Galluppi, S. Temple, L.A. Plana, The SpiNNaker project. Proc. IEEE 102(5), 652–665 (2014)CrossRef
45.
Zurück zum Zitat P.A. Merolla et al., A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197), 668–673 (2014)CrossRef P.A. Merolla et al., A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197), 668–673 (2014)CrossRef
47.
Zurück zum Zitat A. van Schaik, S.-C. Liu, AER EAR: a matched silicon cochlea pair with address event representation interface. Proc. IEEE Int. Symp. Circuits Syst. 5, 4213–4216 (2005) A. van Schaik, S.-C. Liu, AER EAR: a matched silicon cochlea pair with address event representation interface. Proc. IEEE Int. Symp. Circuits Syst. 5, 4213–4216 (2005)
49.
Zurück zum Zitat P. Lichtsteiner, C. Posch, T. Delbruck, A dB using latency asynchronous temporal contrast vision sensor. IEEE J SolidState Circ. 43(2), 566–576 (2008)CrossRef P. Lichtsteiner, C. Posch, T. Delbruck, A dB using latency asynchronous temporal contrast vision sensor. IEEE J SolidState Circ. 43(2), 566–576 (2008)CrossRef
50.
Zurück zum Zitat S. Song, K.D. Miller, L.F. Abbott, Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neurosci. 3(9), 919–926 (2000)CrossRef S. Song, K.D. Miller, L.F. Abbott, Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neurosci. 3(9), 919–926 (2000)CrossRef
51.
Zurück zum Zitat N. Kasabov, K. Dhoble, N. Nuntalid, G. Indiveri, Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition. Neural Netw. 41, 188–201 (2013)CrossRef N. Kasabov, K. Dhoble, N. Nuntalid, G. Indiveri, Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition. Neural Netw. 41, 188–201 (2013)CrossRef
52.
Zurück zum Zitat N. Kasabov, Evolving Connectionist Systems (Springer, New York, NY, USA, 2007)MATH N. Kasabov, Evolving Connectionist Systems (Springer, New York, NY, USA, 2007)MATH
53.
Zurück zum Zitat S.G. Wysoski, L. Benuskova, N. Kasabov, Evolving spiking neural networks for audiovisual information processing. Neural Netw. 23(7), 819–835 (2010)CrossRef S.G. Wysoski, L. Benuskova, N. Kasabov, Evolving spiking neural networks for audiovisual information processing. Neural Netw. 23(7), 819–835 (2010)CrossRef
54.
Zurück zum Zitat W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)CrossRef W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)CrossRef
55.
Zurück zum Zitat N.K. Kasabov, NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio temporal brain data. Neural Netw. 52, 62–76 (2014)CrossRef N.K. Kasabov, NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio temporal brain data. Neural Netw. 52, 62–76 (2014)CrossRef
56.
Zurück zum Zitat J. Talairach, P. Tournoux, Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging (Thieme Medical Publishers, New York, NY, USA, 1998) J. Talairach, P. Tournoux, Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging (Thieme Medical Publishers, New York, NY, USA, 1998)
57.
Zurück zum Zitat M. Brett, K. Christoff, R. Cusack, J. Lancaster, Using the Talairach atlas with the MNI template. NeuroImage 13(6), 85 (2001)CrossRef M. Brett, K. Christoff, R. Cusack, J. Lancaster, Using the Talairach atlas with the MNI template. NeuroImage 13(6), 85 (2001)CrossRef
59.
Zurück zum Zitat E.M. Izhikevich, Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15(5), 1063–1070 (2004)CrossRef E.M. Izhikevich, Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15(5), 1063–1070 (2004)CrossRef
60.
Zurück zum Zitat E. Tu et al., in NeuCube(ST) for Spatio-Temporal Data Predictive Modeling with a Case Study on Ecological Data, in Proceedings of International Joint Conference on Neural Networks (IJCNN), Beijing, China (2014), Jul 2014, pp. 638–645 E. Tu et al., in NeuCube(ST) for Spatio-Temporal Data Predictive Modeling with a Case Study on Ecological Data, in Proceedings of International Joint Conference on Neural Networks (IJCNN), Beijing, China (2014), Jul 2014, pp. 638–645
62.
Zurück zum Zitat E. Bullmore, O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Rev. Neurosci. 10(3), 186–198 (2009)CrossRef E. Bullmore, O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Rev. Neurosci. 10(3), 186–198 (2009)CrossRef
63.
Zurück zum Zitat V. Braitenberg, A. Schuz, Cortex: Statistics and Geometry of Neuronal Connectivity (Springer, Berlin, Germany, 1998)CrossRef V. Braitenberg, A. Schuz, Cortex: Statistics and Geometry of Neuronal Connectivity (Springer, Berlin, Germany, 1998)CrossRef
64.
Zurück zum Zitat S. Schliebs, N. Kasabov, Evolving spiking neural network—a survey. Evolving Syst. 4(2), 87–98 (2013)CrossRef S. Schliebs, N. Kasabov, Evolving spiking neural network—a survey. Evolving Syst. 4(2), 87–98 (2013)CrossRef
69.
Zurück zum Zitat L. Koessler et al., Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system. NeuroImage 46(1), 64–72 (2009)CrossRef L. Koessler et al., Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system. NeuroImage 46(1), 64–72 (2009)CrossRef
70.
Zurück zum Zitat S. Thorpe, J. Gautrais, in Rank Order Coding. Computational Neuroscience (Plenum Press, New York, NY, USA, 1998), pp. 113–118 S. Thorpe, J. Gautrais, in Rank Order Coding. Computational Neuroscience (Plenum Press, New York, NY, USA, 1998), pp. 113–118
71.
Zurück zum Zitat M. Yuasa, K. Saito, N. Mukawa, Brain activity when reading sentences and emoticons: an fMRI study of verbal and nonverbal communication. Electron. Commun. Jpn. 94(5), 17–24 (2011)CrossRef M. Yuasa, K. Saito, N. Mukawa, Brain activity when reading sentences and emoticons: an fMRI study of verbal and nonverbal communication. Electron. Commun. Jpn. 94(5), 17–24 (2011)CrossRef
72.
Zurück zum Zitat R.K. Christensen, Negative and affirmative sentences increase activation in different areas in the brain. J. Neurolinguist. 22(1), 1–17 (2009)CrossRef R.K. Christensen, Negative and affirmative sentences increase activation in different areas in the brain. J. Neurolinguist. 22(1), 1–17 (2009)CrossRef
73.
Zurück zum Zitat D. Zhou, O. Bousquet, T.N. Lal, J. Weston, B. Schölkopf, Learning with local and global consistency. Proc. Adv. Neural Inf. Process. Syst. 16, 321–328 (2004) D. Zhou, O. Bousquet, T.N. Lal, J. Weston, B. Schölkopf, Learning with local and global consistency. Proc. Adv. Neural Inf. Process. Syst. 16, 321–328 (2004)
74.
Zurück zum Zitat M. Behroozi, M.R. Daliri, RDLPFC area of the brain encodes sentence polarity: a study using fMRI. Brain Imag. Behav. 9(2), 178–189 (2015)CrossRef M. Behroozi, M.R. Daliri, RDLPFC area of the brain encodes sentence polarity: a study using fMRI. Brain Imag. Behav. 9(2), 178–189 (2015)CrossRef
75.
Zurück zum Zitat N. Kasabov, L. Zhou, M. Gholami Doborjeh, J. Yang, New algorithms for encoding, learning and classification of fMRI data in a spiking neural network architecture: a case on modelling and understanding of dynamic cognitive processes. IEEE Trans. Cogn. Dev. Syst. (2017). https://doi.org/10.1109/tcds.2016.2636291 N. Kasabov, L. Zhou, M. Gholami Doborjeh, J. Yang, New algorithms for encoding, learning and classification of fMRI data in a spiking neural network architecture: a case on modelling and understanding of dynamic cognitive processes. IEEE Trans. Cogn. Dev. Syst. (2017). https://​doi.​org/​10.​1109/​tcds.​2016.​2636291
76.
Zurück zum Zitat J. Sjöström, W. Gerstner, Spike-timing dependent plasticity. Front. Synaptic Neurosci. 5(2), 35–44 (2010) J. Sjöström, W. Gerstner, Spike-timing dependent plasticity. Front. Synaptic Neurosci. 5(2), 35–44 (2010)
77.
Zurück zum Zitat T. Masquelier, R. Guyonneau, S. J. Thorpe, Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains. PLoS ONE 3(1), Art. no. e1377 (2008) T. Masquelier, R. Guyonneau, S. J. Thorpe, Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains. PLoS ONE 3(1), Art. no. e1377 (2008)
78.
Zurück zum Zitat M.G. Doborjeh, E. Capecci, N. Kasabov, in Classification and Segmentation of fMRI Spatio-Temporal Brain Data with a NeuCube Evolving Spiking Neural Network Model. Proceedings of IEEE Symposium on Evolving and Autonomous Learning Systems (EALS), (Orlando, FL, USA, 2014), pp. 73–80 M.G. Doborjeh, E. Capecci, N. Kasabov, in Classification and Segmentation of fMRI Spatio-Temporal Brain Data with a NeuCube Evolving Spiking Neural Network Model. Proceedings of IEEE Symposium on Evolving and Autonomous Learning Systems (EALS), (Orlando, FL, USA, 2014), pp. 73–80
79.
Zurück zum Zitat N. Kasabov (ed.), in Springer Handbook of Bio-/Neuroinformatics (Springer, 2014) N. Kasabov (ed.), in Springer Handbook of Bio-/Neuroinformatics (Springer, 2014)
80.
Zurück zum Zitat G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetCrossRef G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetCrossRef
81.
Zurück zum Zitat G.E. Hinton, Learning multiple layers of representation. Trends Cogn. Sci. 11(10), 428–434 (2007)CrossRef G.E. Hinton, Learning multiple layers of representation. Trends Cogn. Sci. 11(10), 428–434 (2007)CrossRef
82.
Zurück zum Zitat Y. Bengio, Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)CrossRef Y. Bengio, Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)CrossRef
83.
Zurück zum Zitat Y. LeCun, Y. Bengio, in Convolutional Networks for Images, Speech, and Time Series. The Handbook of Brain Theory and Neural Networks, vol 3361 (MIT Press, Cambridge, MA, USA, 1995), p. 1995 Y. LeCun, Y. Bengio, in Convolutional Networks for Images, Speech, and Time Series. The Handbook of Brain Theory and Neural Networks, vol 3361 (MIT Press, Cambridge, MA, USA, 1995), p. 1995
84.
Zurück zum Zitat J. Schmidhuber, Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)CrossRef J. Schmidhuber, Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)CrossRef
86.
Zurück zum Zitat N. Sengupta, C. McNabb, N. Kasabov, B. Russel, Integrating space, time and orientation in spiking neural networks: a case study on multimodal brain data modelling. IEEE Trans. Neural Netw. Learn. Syst. (2018) N. Sengupta, C. McNabb, N. Kasabov, B. Russel, Integrating space, time and orientation in spiking neural networks: a case study on multimodal brain data modelling. IEEE Trans. Neural Netw. Learn. Syst. (2018)
Metadaten
Titel
Deep Learning and Deep Knowledge Representation of fMRI Data
verfasst von
Nikola K. Kasabov
Copyright-Jahr
2019
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-57715-8_10

Premium Partner