Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2017

20.04.2017

Deformation Heterogeneity and Texture Evolution of NiTiFe Shape Memory Alloy Under Uniaxial Compression Based on Crystal Plasticity Finite Element Method

verfasst von: Yulong Liang, Shuyong Jiang, Yanqiu Zhang, Yanan Zhao, Dong Sun, Chengzhi Zhao

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Crystal plastic finite element method (CPFEM) is used to simulate microstructural evolution, texture evolution and macroscopic stress-strain response of polycrystalline NiTiFe shape memory alloy (SMA) with B2 austenite phase during compression deformation. A novel two-dimensional polycrystalline finite element model based on electron back-scattered diffraction (EBSD) experiment data is developed to represent virtual grain structures of polycrystalline NiTiFe SMA. In the present study, CPFEM plays a significant role in predicting texture evolution and macroscopic stress-strain response of NiTiFe SMA during compression deformation. The simulated results are in good agreement with the experimental ones. It can be concluded that intragranular and intergranular strain heterogeneities are of great importance in guaranteeing plastic deformation compatibility of NiTiFe SMA. CPFEM is able to capture the evolution of grain boundaries with various misorientation angles for NiTiFe SMA subjected to the various compression deformation degrees. During uniaxial compression of NiTiFe SMA, the microstructure evolves into high-energy substructure and consequently the well-defined subgrains are formed. Furthermore, the grain boundaries and the subgrain boundaries are approximately aligned with the direction in which metal flows.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Mirzaeifar, K. Gall, T. Zhu, A. Yavari, and R. DesRoches, Structural Transformations in NiTi Shape Memory Alloy Nanowires, J. Appl. Phys., 2014, 115(19), p 194307CrossRef R. Mirzaeifar, K. Gall, T. Zhu, A. Yavari, and R. DesRoches, Structural Transformations in NiTi Shape Memory Alloy Nanowires, J. Appl. Phys., 2014, 115(19), p 194307CrossRef
2.
Zurück zum Zitat X. Wang, S. Kustov, K. Li, D. Schryvers, B. Verlinden, and J. Van Humbeeck, Effect of Nanoprecipitates on the Transformation Behavior and Functional Properties of a Ti-50.8 at.% Ni Alloy with Micron-Sized Grains, Acta Mater., 2015, 82, p 224–233CrossRef X. Wang, S. Kustov, K. Li, D. Schryvers, B. Verlinden, and J. Van Humbeeck, Effect of Nanoprecipitates on the Transformation Behavior and Functional Properties of a Ti-50.8 at.% Ni Alloy with Micron-Sized Grains, Acta Mater., 2015, 82, p 224–233CrossRef
3.
Zurück zum Zitat S. Barbarino, E.I. Saavedra Flores, R.M. Ajaj, I. Dayyani, and M.I. Friswell, A Review on Shape Memory Alloys with Applications to Morphing Aircraft, Smart Mater. Struct., 2014, 23(6), p 063001CrossRef S. Barbarino, E.I. Saavedra Flores, R.M. Ajaj, I. Dayyani, and M.I. Friswell, A Review on Shape Memory Alloys with Applications to Morphing Aircraft, Smart Mater. Struct., 2014, 23(6), p 063001CrossRef
4.
Zurück zum Zitat C. Yang, Q.R. Cheng, L.H. Liu, Y.H. Li, and Y.Y. Li, Effect of Minor Cu Content on Microstructure and Mechanical Property of NiTiCu Bulk Alloys Fabricated by Crystallization of Metallic Glass Powder, Intermetallics, 2015, 56, p 37–43CrossRef C. Yang, Q.R. Cheng, L.H. Liu, Y.H. Li, and Y.Y. Li, Effect of Minor Cu Content on Microstructure and Mechanical Property of NiTiCu Bulk Alloys Fabricated by Crystallization of Metallic Glass Powder, Intermetallics, 2015, 56, p 37–43CrossRef
5.
Zurück zum Zitat A. Nespoli, F. Passaretti, and E. Villa, Phase Transition and Mechanical Damping Properties: A DMTA Study of NiTiCu Shape Memory Alloys, Intermetallics, 2013, 32, p 394–400CrossRef A. Nespoli, F. Passaretti, and E. Villa, Phase Transition and Mechanical Damping Properties: A DMTA Study of NiTiCu Shape Memory Alloys, Intermetallics, 2013, 32, p 394–400CrossRef
6.
Zurück zum Zitat I. Yoshida, D. Monma, and T. Ono, Damping Characteristics of Ti50Ni47Fe3 Alloy, J. Alloys Compd., 2008, 448(1–2), p 349–354CrossRef I. Yoshida, D. Monma, and T. Ono, Damping Characteristics of Ti50Ni47Fe3 Alloy, J. Alloys Compd., 2008, 448(1–2), p 349–354CrossRef
7.
Zurück zum Zitat J.Y. Yin, G.F. Li, Y.L. Si, G. Ying, and P. Peng, Micromechanism of Cu and Fe Alloying Process on the Martensitic Phase Transformation of NiTi-BASED ALLOYS: FIRST-PRINCIPLES CALCULATION, J. Struct. Chem., 2016, 56(6), p 1051–1057CrossRef J.Y. Yin, G.F. Li, Y.L. Si, G. Ying, and P. Peng, Micromechanism of Cu and Fe Alloying Process on the Martensitic Phase Transformation of NiTi-BASED ALLOYS: FIRST-PRINCIPLES CALCULATION, J. Struct. Chem., 2016, 56(6), p 1051–1057CrossRef
8.
Zurück zum Zitat R. Basu, L. Jain, B. Maji, and M. Krishnan, Dynamic Recrystallization in a Ni–Ti–Fe Shape Memory Alloy: Effects on Austenite–Martensite Phase Transformation, J. Alloys Compd., 2015, 639, p 94–101CrossRef R. Basu, L. Jain, B. Maji, and M. Krishnan, Dynamic Recrystallization in a Ni–Ti–Fe Shape Memory Alloy: Effects on Austenite–Martensite Phase Transformation, J. Alloys Compd., 2015, 639, p 94–101CrossRef
9.
Zurück zum Zitat R. Basu, M.A. Mohtadi-Bonab, X. Wang, M. Eskandari, and J.A. Szpunar, Role of Microstructure on Phase Transformation Behavior in Ni–Ti–Fe Shape Memory Alloys During Thermal Cycling, J. Alloys Compd., 2015, 652, p 459–469CrossRef R. Basu, M.A. Mohtadi-Bonab, X. Wang, M. Eskandari, and J.A. Szpunar, Role of Microstructure on Phase Transformation Behavior in Ni–Ti–Fe Shape Memory Alloys During Thermal Cycling, J. Alloys Compd., 2015, 652, p 459–469CrossRef
10.
Zurück zum Zitat R. Basu, J. Szpunar, M. Eskandari, and M. Mohtadi-Bonab, Microstructural Investigation on Marforming and Conventional Cold Deformation in Ni–Ti–Fe-Based Shape Memory Alloys, Int. J. Mater. Res., 2015, 106(8), p 852–862CrossRef R. Basu, J. Szpunar, M. Eskandari, and M. Mohtadi-Bonab, Microstructural Investigation on Marforming and Conventional Cold Deformation in Ni–Ti–Fe-Based Shape Memory Alloys, Int. J. Mater. Res., 2015, 106(8), p 852–862CrossRef
11.
Zurück zum Zitat R. Basu, M. Eskandari, L. Upadhayay, M.A. Mohtadi-Bonab, and J.A. Szpunar, A systematic Investigation on the Role of Microstructure on Phase Transformation Behavior in Ni–Ti–Fe Shape Memory Alloys, J. Alloys Compd., 2015, 645, p 213–222CrossRef R. Basu, M. Eskandari, L. Upadhayay, M.A. Mohtadi-Bonab, and J.A. Szpunar, A systematic Investigation on the Role of Microstructure on Phase Transformation Behavior in Ni–Ti–Fe Shape Memory Alloys, J. Alloys Compd., 2015, 645, p 213–222CrossRef
12.
Zurück zum Zitat K.H. Jung, D.K. Kim, Y.T. Im, and Y.S. Lee, Prediction of the Effects of Hardening and Texture Heterogeneities by Finite Element Analysis Based on the Taylor Model, Int. J. Plast., 2013, 42, p 120–140CrossRef K.H. Jung, D.K. Kim, Y.T. Im, and Y.S. Lee, Prediction of the Effects of Hardening and Texture Heterogeneities by Finite Element Analysis Based on the Taylor Model, Int. J. Plast., 2013, 42, p 120–140CrossRef
13.
Zurück zum Zitat J. Segurado, R.A. Lebensohn, J. Llorca, and C.N. Tomé, Multiscale Modeling of Plasticity Based on Embedding the Viscoplastic Self-Consistent Formulation in Implicit Finite Elements, Int. J. Plast., 2012, 28(1), p 124–140CrossRef J. Segurado, R.A. Lebensohn, J. Llorca, and C.N. Tomé, Multiscale Modeling of Plasticity Based on Embedding the Viscoplastic Self-Consistent Formulation in Implicit Finite Elements, Int. J. Plast., 2012, 28(1), p 124–140CrossRef
14.
Zurück zum Zitat D.K. Kim, K.H. Jung, W.W. Park, Y.T. Im, and Y.S. Lee, Numerical Study of the Effect of Prior Deformation History on Texture Evolution During Equal Channel Angular Pressing, Comput. Mater. Sci., 2014, 81, p 68–78CrossRef D.K. Kim, K.H. Jung, W.W. Park, Y.T. Im, and Y.S. Lee, Numerical Study of the Effect of Prior Deformation History on Texture Evolution During Equal Channel Angular Pressing, Comput. Mater. Sci., 2014, 81, p 68–78CrossRef
15.
Zurück zum Zitat H. Abdolvand and M.R. Daymond, Internal Strain and Texture Development During Twinning: Comparing Neutron Diffraction Measurements with Crystal Plasticity Finite-Element Approaches, Acta Mater., 2012, 60(5), p 2240–2248CrossRef H. Abdolvand and M.R. Daymond, Internal Strain and Texture Development During Twinning: Comparing Neutron Diffraction Measurements with Crystal Plasticity Finite-Element Approaches, Acta Mater., 2012, 60(5), p 2240–2248CrossRef
16.
Zurück zum Zitat S.R. Kalidindi, B.R. Donohue, and S. Li, Modeling Texture Evolution in Equal Channel Angular Extrusion Using Crystal Plasticity Finite Element Models, Int. J. Plast., 2009, 25(5), p 768–779CrossRef S.R. Kalidindi, B.R. Donohue, and S. Li, Modeling Texture Evolution in Equal Channel Angular Extrusion Using Crystal Plasticity Finite Element Models, Int. J. Plast., 2009, 25(5), p 768–779CrossRef
17.
Zurück zum Zitat D.K. Kim, J.M. Kim, W.W. Park, H.W. Lee, Y.T. Im, and Y.S. Lee, Three-Dimensional Crystal Plasticity Finite Element Analysis of Microstructure and Texture Evolution During Channel Die Compression of IF Steel, Comput. Mater. Sci., 2015, 100, p 52–60CrossRef D.K. Kim, J.M. Kim, W.W. Park, H.W. Lee, Y.T. Im, and Y.S. Lee, Three-Dimensional Crystal Plasticity Finite Element Analysis of Microstructure and Texture Evolution During Channel Die Compression of IF Steel, Comput. Mater. Sci., 2015, 100, p 52–60CrossRef
18.
Zurück zum Zitat H.R. Wenk and P.V. Houtte, Texture and Anisotropy, Rep. Prog. Phys., 2004, 67(8), p 1367–1428CrossRef H.R. Wenk and P.V. Houtte, Texture and Anisotropy, Rep. Prog. Phys., 2004, 67(8), p 1367–1428CrossRef
19.
Zurück zum Zitat Z. Zhao, M. Ramesh, D. Raabe, A.M. Cuitiño, and R. Radovitzky, Investigation of Three-Dimensional Aspects of Grain-Scale Plastic Surface Deformation of an Aluminum Oligocrystal, Int. J. Plast., 2008, 24(12), p 2278–2297CrossRef Z. Zhao, M. Ramesh, D. Raabe, A.M. Cuitiño, and R. Radovitzky, Investigation of Three-Dimensional Aspects of Grain-Scale Plastic Surface Deformation of an Aluminum Oligocrystal, Int. J. Plast., 2008, 24(12), p 2278–2297CrossRef
20.
Zurück zum Zitat S. Berbenni, V. Favier, and M. Berveiller, Impact of the Grain Size Distribution on the Yield Stress of Heterogeneous Materials, Int. J. Plast., 2007, 23(1), p 114–142CrossRef S. Berbenni, V. Favier, and M. Berveiller, Impact of the Grain Size Distribution on the Yield Stress of Heterogeneous Materials, Int. J. Plast., 2007, 23(1), p 114–142CrossRef
21.
Zurück zum Zitat N.M. Cordero, S. Forest, E.P. Busso, S. Berbenni, and M. Cherkaoui, Grain Size Effects on Plastic Strain and Dislocation Density Tensor Fields in Metal Polycrystals, Comput. Mater. Sci., 2012, 52(1), p 7–13CrossRef N.M. Cordero, S. Forest, E.P. Busso, S. Berbenni, and M. Cherkaoui, Grain Size Effects on Plastic Strain and Dislocation Density Tensor Fields in Metal Polycrystals, Comput. Mater. Sci., 2012, 52(1), p 7–13CrossRef
22.
Zurück zum Zitat L. Delannay, P.J. Jacques, and S.R. Kalidindi, Finite Element Modeling of Crystal Plasticity with Grains Shaped as Truncated Octahedrons, Int. J. Plast., 2006, 22(10), p 1879–1898CrossRef L. Delannay, P.J. Jacques, and S.R. Kalidindi, Finite Element Modeling of Crystal Plasticity with Grains Shaped as Truncated Octahedrons, Int. J. Plast., 2006, 22(10), p 1879–1898CrossRef
23.
Zurück zum Zitat M.G. Lee, S.J. Kim, and H.N. Han, Crystal Plasticity Finite Element Modeling of Mechanically Induced Martensitic Transformation (MIMT) in Metastable Austenite, Int. J. Plast., 2010, 26(5), p 688–710CrossRef M.G. Lee, S.J. Kim, and H.N. Han, Crystal Plasticity Finite Element Modeling of Mechanically Induced Martensitic Transformation (MIMT) in Metastable Austenite, Int. J. Plast., 2010, 26(5), p 688–710CrossRef
24.
Zurück zum Zitat T. Dick and G. Cailletaud, Fretting Modelling with a Crystal Plasticity Model of Ti6Al4V, Comput. Mater. Sci., 2006, 38(1), p 113–125CrossRef T. Dick and G. Cailletaud, Fretting Modelling with a Crystal Plasticity Model of Ti6Al4V, Comput. Mater. Sci., 2006, 38(1), p 113–125CrossRef
25.
Zurück zum Zitat L. Li, L. Shen, and G. Proust, A texture-Based Representative Volume Element Crystal Plasticity Model for Predicting Bauschinger Effect During Cyclic Loading, Mater. Sci. Eng. A, 2014, 608, p 174–183CrossRef L. Li, L. Shen, and G. Proust, A texture-Based Representative Volume Element Crystal Plasticity Model for Predicting Bauschinger Effect During Cyclic Loading, Mater. Sci. Eng. A, 2014, 608, p 174–183CrossRef
26.
Zurück zum Zitat P. Zhang, M. Karimpour, D. Balint, J. Lin, and D. Farrugia, A Controlled Poisson Voronoi Tessellation for Grain and Cohesive Boundary Generation Applied to Crystal Plasticity Analysis, Comput. Mater. Sci, 2012, 64, p 84–89CrossRef P. Zhang, M. Karimpour, D. Balint, J. Lin, and D. Farrugia, A Controlled Poisson Voronoi Tessellation for Grain and Cohesive Boundary Generation Applied to Crystal Plasticity Analysis, Comput. Mater. Sci, 2012, 64, p 84–89CrossRef
27.
Zurück zum Zitat D. Raabe, M. Sachtleber, Z. Zhao, F. Roters, and S. Zaefferer, Micromechanical and Macromechanical Effects in Grain Scale Polycrystal Plasticity Experimentation and Simulation, Acta Mater., 2001, 49(17), p 3433–3441CrossRef D. Raabe, M. Sachtleber, Z. Zhao, F. Roters, and S. Zaefferer, Micromechanical and Macromechanical Effects in Grain Scale Polycrystal Plasticity Experimentation and Simulation, Acta Mater., 2001, 49(17), p 3433–3441CrossRef
28.
Zurück zum Zitat S. Zaefferer, J.C. Kuo, Z. Zhao, M. Winning, and D. Raabe, On the Influence of the Grain Boundary Misorientation on the Plastic Deformation of Aluminum Bicrystals, Acta Mater., 2003, 51(16), p 4719–4735CrossRef S. Zaefferer, J.C. Kuo, Z. Zhao, M. Winning, and D. Raabe, On the Influence of the Grain Boundary Misorientation on the Plastic Deformation of Aluminum Bicrystals, Acta Mater., 2003, 51(16), p 4719–4735CrossRef
29.
Zurück zum Zitat C.C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters, and D. Raabe, Integrated Experimental–Simulation Analysis of Stress and Strain Partitioning in Multiphase Alloys, Acta Mater., 2014, 81, p 386–400CrossRef C.C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters, and D. Raabe, Integrated Experimental–Simulation Analysis of Stress and Strain Partitioning in Multiphase Alloys, Acta Mater., 2014, 81, p 386–400CrossRef
30.
Zurück zum Zitat C.C. Tasan, J.P.M. Hoefnagels, M. Diehl, D. Yan, F. Roters, and D. Raabe, Strain Localization and Damage in Dual Phase Steels Investigated by Coupled In-Situ Deformation Experiments and Crystal Plasticity Simulations, Int. J. Plast., 2014, 63, p 198–210CrossRef C.C. Tasan, J.P.M. Hoefnagels, M. Diehl, D. Yan, F. Roters, and D. Raabe, Strain Localization and Damage in Dual Phase Steels Investigated by Coupled In-Situ Deformation Experiments and Crystal Plasticity Simulations, Int. J. Plast., 2014, 63, p 198–210CrossRef
31.
Zurück zum Zitat D. Yan, C.C. Tasan, and D. Raabe, High Resolution In Situ Mapping of Microstrain and Microstructure Evolution Reveals Damage Resistance Criteria in Dual Phase Steels, Acta Mater., 2015, 96, p 399–409CrossRef D. Yan, C.C. Tasan, and D. Raabe, High Resolution In Situ Mapping of Microstrain and Microstructure Evolution Reveals Damage Resistance Criteria in Dual Phase Steels, Acta Mater., 2015, 96, p 399–409CrossRef
32.
Zurück zum Zitat F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Overview of Constitutive Laws, Kinematics, Homogenization and Multiscale Methods in Crystal Plasticity Finite-Element Modeling: Theory, Experiments, Applications, Acta Mater., 2010, 58(4), p 1152–1211CrossRef F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Overview of Constitutive Laws, Kinematics, Homogenization and Multiscale Methods in Crystal Plasticity Finite-Element Modeling: Theory, Experiments, Applications, Acta Mater., 2010, 58(4), p 1152–1211CrossRef
33.
Zurück zum Zitat D. Raabe and R.C. Becker, Coupling of a Crystal Plasticity Finite-Element Model with a Probabilistic Cellular Automaton for Simulating Primary Static Recrystallization in Aluminium, Modell. Simul. Mater. Sci. Eng., 2000, 8(4), p 445–462CrossRef D. Raabe and R.C. Becker, Coupling of a Crystal Plasticity Finite-Element Model with a Probabilistic Cellular Automaton for Simulating Primary Static Recrystallization in Aluminium, Modell. Simul. Mater. Sci. Eng., 2000, 8(4), p 445–462CrossRef
34.
Zurück zum Zitat M. Sachtleber, Z. Zhao, and D. Raabe, Experimental Investigation of Plastic Grain Interaction, Mater. Sci. Eng. A, 2002, 336(1), p 81–87CrossRef M. Sachtleber, Z. Zhao, and D. Raabe, Experimental Investigation of Plastic Grain Interaction, Mater. Sci. Eng. A, 2002, 336(1), p 81–87CrossRef
35.
Zurück zum Zitat T.R. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D.E. Mason, M.A. Crimp, and D. Raabe, The Role of Heterogeneous Deformation on Damage Nucleation at Grain Boundaries in Single Phase Metals, Int. J. Plast., 2009, 25(9), p 1655–1683CrossRef T.R. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D.E. Mason, M.A. Crimp, and D. Raabe, The Role of Heterogeneous Deformation on Damage Nucleation at Grain Boundaries in Single Phase Metals, Int. J. Plast., 2009, 25(9), p 1655–1683CrossRef
36.
Zurück zum Zitat S.L. Wong, M. Madivala, U. Prahl, F. Roters, and D. Raabe, A Crystal Plasticity Model for Twinning- and Transformation-Induced Plasticity, Acta Mater., 2016, 118, p 140–151CrossRef S.L. Wong, M. Madivala, U. Prahl, F. Roters, and D. Raabe, A Crystal Plasticity Model for Twinning- and Transformation-Induced Plasticity, Acta Mater., 2016, 118, p 140–151CrossRef
37.
Zurück zum Zitat J.R. Rice, Inelastic Constitutive Relations for Solids: An Internal-Variable Theory and Its Application to Metal Plasticity, J. Mech. Phys. Solids, 1971, 19(6), p 433–455CrossRef J.R. Rice, Inelastic Constitutive Relations for Solids: An Internal-Variable Theory and Its Application to Metal Plasticity, J. Mech. Phys. Solids, 1971, 19(6), p 433–455CrossRef
38.
Zurück zum Zitat R. Hill and J. Rice, Constitutive Analysis of Elastic–Plastic Crystals at Arbitrary Strain, J. Mech. Phys. Solids, 1972, 20(6), p 401–413CrossRef R. Hill and J. Rice, Constitutive Analysis of Elastic–Plastic Crystals at Arbitrary Strain, J. Mech. Phys. Solids, 1972, 20(6), p 401–413CrossRef
39.
Zurück zum Zitat D. Peirce, R.J. Asaro, and A. Needleman, Material Rate Dependence and Localized Deformation in Crystalline Solids, Acta Metall., 1983, 31(12), p 1951–1976CrossRef D. Peirce, R.J. Asaro, and A. Needleman, Material Rate Dependence and Localized Deformation in Crystalline Solids, Acta Metall., 1983, 31(12), p 1951–1976CrossRef
40.
Zurück zum Zitat D. Peirce, R. Asaro, and A. Needleman, An Analysis of Nonuniform and Localized Deformation In Ductile Single Crystals, Acta Metall., 1982, 30(6), p 1087–1119CrossRef D. Peirce, R. Asaro, and A. Needleman, An Analysis of Nonuniform and Localized Deformation In Ductile Single Crystals, Acta Metall., 1982, 30(6), p 1087–1119CrossRef
41.
Zurück zum Zitat S.R. Kalidindi, C.A. Bronkhorst, and L. Anand, Crystallographic Texture Evolution in Bulk Deformation Processing of FCC Metals, J. Mech. Phys. Solids, 1992, 40(3), p 537–569CrossRef S.R. Kalidindi, C.A. Bronkhorst, and L. Anand, Crystallographic Texture Evolution in Bulk Deformation Processing of FCC Metals, J. Mech. Phys. Solids, 1992, 40(3), p 537–569CrossRef
42.
Zurück zum Zitat J. Zhang, X. Ren, K. Otsuka, K. Tanaka, Y.I. Chumlyakov, and M. Asai, Elastic Constants of Ti-48 at.% Ni-2 at.% Fe Single Crystal Prior to B2→R Transformation, Mater. Trans. JIM, 1999, 40(5), p 385–388CrossRef J. Zhang, X. Ren, K. Otsuka, K. Tanaka, Y.I. Chumlyakov, and M. Asai, Elastic Constants of Ti-48 at.% Ni-2 at.% Fe Single Crystal Prior to B2→R Transformation, Mater. Trans. JIM, 1999, 40(5), p 385–388CrossRef
43.
Zurück zum Zitat S. Manchiraju and P.M. Anderson, Coupling Between Martensitic Phase Transformations and Plasticity: A Microstructure-Based Finite Element Model, Int. J. Plast., 2010, 26(10), p 1508–1526CrossRef S. Manchiraju and P.M. Anderson, Coupling Between Martensitic Phase Transformations and Plasticity: A Microstructure-Based Finite Element Model, Int. J. Plast., 2010, 26(10), p 1508–1526CrossRef
44.
Zurück zum Zitat Y.I. Chumlyakov, N.S. Surikova, and A.D. Korotaev, Orientation Dependence of Strength and Plasticity of Titanium Nickelide Single Crystals, Phys. Metals Metallogr., 1996, 82(1), p 102–109 Y.I. Chumlyakov, N.S. Surikova, and A.D. Korotaev, Orientation Dependence of Strength and Plasticity of Titanium Nickelide Single Crystals, Phys. Metals Metallogr., 1996, 82(1), p 102–109
45.
Zurück zum Zitat D.M. Norfleet, P.M. Sarosi, S. Manchiraju, M.F.X. Wagner, M.D. Uchic, P.M. Anderson, and M.J. Mills, Transformation-Induced Plasticity During Pseudoelastic Deformation in Ni–Ti Microcrystals, Acta Mater., 2009, 57(12), p 3549–3561CrossRef D.M. Norfleet, P.M. Sarosi, S. Manchiraju, M.F.X. Wagner, M.D. Uchic, P.M. Anderson, and M.J. Mills, Transformation-Induced Plasticity During Pseudoelastic Deformation in Ni–Ti Microcrystals, Acta Mater., 2009, 57(12), p 3549–3561CrossRef
46.
Zurück zum Zitat T. Ezaz, J. Wang, H. Sehitoglu, and H.J. Maier, Plastic Deformation of NiTi Shape Memory Alloys, Acta Mater., 2013, 61(1), p 67–78CrossRef T. Ezaz, J. Wang, H. Sehitoglu, and H.J. Maier, Plastic Deformation of NiTi Shape Memory Alloys, Acta Mater., 2013, 61(1), p 67–78CrossRef
47.
Zurück zum Zitat Yu G. Kang and Q. Kan, Crystal Plasticity Based Constitutive Model of NiTi Shape Memory Alloy Considering Different Mechanisms of Inelastic Deformation, Int. J. Plast., 2014, 54, p 132–162CrossRef Yu G. Kang and Q. Kan, Crystal Plasticity Based Constitutive Model of NiTi Shape Memory Alloy Considering Different Mechanisms of Inelastic Deformation, Int. J. Plast., 2014, 54, p 132–162CrossRef
48.
Zurück zum Zitat A. Brahme, M.H. Alvi, D. Saylor, J. Fridy, and A.D. Rollett, 3D Reconstruction of Microstructure in a Commercial Purity Aluminum, Scr. Mater., 2006, 55(1), p 75–80CrossRef A. Brahme, M.H. Alvi, D. Saylor, J. Fridy, and A.D. Rollett, 3D Reconstruction of Microstructure in a Commercial Purity Aluminum, Scr. Mater., 2006, 55(1), p 75–80CrossRef
49.
Zurück zum Zitat P.J. Hurley and F.J. Humphreys, A Study of Recrystallization in Single-Phase Aluminium Using In-Situ Annealing in the Scanning Electron Microscope, J. Microsc., 2004, 213(3), p 225–234CrossRef P.J. Hurley and F.J. Humphreys, A Study of Recrystallization in Single-Phase Aluminium Using In-Situ Annealing in the Scanning Electron Microscope, J. Microsc., 2004, 213(3), p 225–234CrossRef
Metadaten
Titel
Deformation Heterogeneity and Texture Evolution of NiTiFe Shape Memory Alloy Under Uniaxial Compression Based on Crystal Plasticity Finite Element Method
verfasst von
Yulong Liang
Shuyong Jiang
Yanqiu Zhang
Yanan Zhao
Dong Sun
Chengzhi Zhao
Publikationsdatum
20.04.2017
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2017
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2678-7

Weitere Artikel der Ausgabe 6/2017

Journal of Materials Engineering and Performance 6/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.