Skip to main content
Erschienen in: Cellulose 6/2012

01.12.2012 | Original Paper

Deformation of cellulose nanocrystals: entropy, internal energy and temperature dependence

verfasst von: Jakob Wohlert, Malin Bergenstråhle-Wohlert, Lars A. Berglund

Erschienen in: Cellulose | Ausgabe 6/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An in-depth analysis was performed of the molecular deformation mechanisms in cellulose during axial stretching. For the first time, it was demonstrated that entropy affects the stiffness of cellulose nanocrystals significantly. This was achieved through Molecular Dynamics simulations of model nanocrystals subject to constant stress in the axial direction, for nanocrystals of varying lateral dimensions and at different temperatures. The simulations were analyzed in terms of Young’s modulus E, which is a measure of the elastic response to applied stress. A weak but significant temperature dependence was shown, with ∂E/∂T =  −0.05 Gpa K−1 at room temperature, in agreement with experimental numbers. In order to analyze the respective contributions from internal energy and entropy, a decomposition of the total response of the free energy with respect to strain was made. It was shown that the decrease in E with increasing T is due to entropy, and that the magnitude of the decrease is 6–9 % at room temperature compared to the value at 0 K. This was also shown independently by a direct calculation of the vibrational entropy of the cellulose crystal. Finally, it was found that internal hydrogen bonds are contributing to the stiffness by 20 %, mainly by stabilizing the cellulose internal structure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Autieri E, Sega M, Guella G (2010) Puckering free energy of pyranoses: a NMR and metadynamics-umbrella sampling investigation. J Chem Phys 133:095,104CrossRef Autieri E, Sega M, Guella G (2010) Puckering free energy of pyranoses: a NMR and metadynamics-umbrella sampling investigation. J Chem Phys 133:095,104CrossRef
Zurück zum Zitat Baron R, Hünenberger PH, McCammon JA (2009) Absolute single-molecule entropies from quasi-harmonic analysis of microsecond molecular dynamics: Correction terms and convergence properties. J Chem Theory Comput 5:3150–3160CrossRef Baron R, Hünenberger PH, McCammon JA (2009) Absolute single-molecule entropies from quasi-harmonic analysis of microsecond molecular dynamics: Correction terms and convergence properties. J Chem Theory Comput 5:3150–3160CrossRef
Zurück zum Zitat Benzerga A, Hong S, Kim K, Needleman A, van der Giessen E (2001) Smaller is softer: an inverse size effect in a cast aluminium alloy. Acta mater 49:3071–3083CrossRef Benzerga A, Hong S, Kim K, Needleman A, van der Giessen E (2001) Smaller is softer: an inverse size effect in a cast aluminium alloy. Acta mater 49:3071–3083CrossRef
Zurück zum Zitat Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) In: Pullman BE (ed) Intermolecular forces. Riedel, Dordrecht, p 331 Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) In: Pullman BE (ed) Intermolecular forces. Riedel, Dordrecht, p 331
Zurück zum Zitat Bergenstråhle M, Berglund LA, Mazeau K (2007) Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J Phys Chem B 111:9138–9145CrossRef Bergenstråhle M, Berglund LA, Mazeau K (2007) Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J Phys Chem B 111:9138–9145CrossRef
Zurück zum Zitat Bergenstråhle M, Wohlert J, Himmel ME, Brady JW (2010) Simulation studies of the insolubility of cellulose. Carbohydr Res 345:2060–2066CrossRef Bergenstråhle M, Wohlert J, Himmel ME, Brady JW (2010) Simulation studies of the insolubility of cellulose. Carbohydr Res 345:2060–2066CrossRef
Zurück zum Zitat Berglund LA, Peijs T (2010) Cellulose biocomposites—from bulk moldings to nanostructured systems. MRS Bull 35:201–207CrossRef Berglund LA, Peijs T (2010) Cellulose biocomposites—from bulk moldings to nanostructured systems. MRS Bull 35:201–207CrossRef
Zurück zum Zitat Chen P, Nishiyama Y, Mazeau K (2012) Torsional entropy at the origin of reversible temperature-induced phase transition of cellulose. Macromol 45:362–368CrossRef Chen P, Nishiyama Y, Mazeau K (2012) Torsional entropy at the origin of reversible temperature-induced phase transition of cellulose. Macromol 45:362–368CrossRef
Zurück zum Zitat Cintrón MS, Johnson GP, French A (2011) Young’s modulus calculations for cellulose I β by mm3 and quantum mechanics. Cellulose 18:505–516CrossRef Cintrón MS, Johnson GP, French A (2011) Young’s modulus calculations for cellulose I β by mm3 and quantum mechanics. Cellulose 18:505–516CrossRef
Zurück zum Zitat Cuenot S, Frétigny C, Demoustier-Champagne S, Nysten B (2004) Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 69:165,410CrossRef Cuenot S, Frétigny C, Demoustier-Champagne S, Nysten B (2004) Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 69:165,410CrossRef
Zurück zum Zitat Davidson TC, Newman RH, Ryan MJ (2004) Variations in the fibre repeat between samples of cellulose I from different sources. Carbohydr Res 339:2889–2893CrossRef Davidson TC, Newman RH, Ryan MJ (2004) Variations in the fibre repeat between samples of cellulose I from different sources. Carbohydr Res 339:2889–2893CrossRef
Zurück zum Zitat Di Nola A, Berendsen HJC, Edholm O (1984) Free energy determination of polypeptide conformations generated by molecular dynamics. Macromol 17:2044–2050CrossRef Di Nola A, Berendsen HJC, Edholm O (1984) Free energy determination of polypeptide conformations generated by molecular dynamics. Macromol 17:2044–2050CrossRef
Zurück zum Zitat Diddens I, Murphy B, Krish M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromol 41:9755–9759CrossRef Diddens I, Murphy B, Krish M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromol 41:9755–9759CrossRef
Zurück zum Zitat Durell SR, Brooks BR, Ben-Naim AJ (1994) Solvent-induced forces between two hydrophilic groups. J Phys Chem 98:2198–2202CrossRef Durell SR, Brooks BR, Ben-Naim AJ (1994) Solvent-induced forces between two hydrophilic groups. J Phys Chem 98:2198–2202CrossRef
Zurück zum Zitat Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13:291–307CrossRef Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13:291–307CrossRef
Zurück zum Zitat Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce woods. Proc Natl Acad Sci 108:E1195–E1203CrossRef Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce woods. Proc Natl Acad Sci 108:E1195–E1203CrossRef
Zurück zum Zitat Guhados G, Wan W, Hutter J (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:6642–6646CrossRef Guhados G, Wan W, Hutter J (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:6642–6646CrossRef
Zurück zum Zitat Guvench O, Greene SN, Kamath G, Brady JW, Venable RM, Pastor RW, MacKerell, Jr AD (2008) Additive empirical force field for hexopyranose monosaccharides. J Comput Chem 29:2543–2564CrossRef Guvench O, Greene SN, Kamath G, Brady JW, Venable RM, Pastor RW, MacKerell, Jr AD (2008) Additive empirical force field for hexopyranose monosaccharides. J Comput Chem 29:2543–2564CrossRef
Zurück zum Zitat Guvench O, Hatcher E, Venable RM, Pastor RW, MacKerell, Jr AD (2009) CHARMM aditive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5:2353–2370CrossRef Guvench O, Hatcher E, Venable RM, Pastor RW, MacKerell, Jr AD (2009) CHARMM aditive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5:2353–2370CrossRef
Zurück zum Zitat Hansen HS, Hünenberger PH (2011) A reoptimized GROMOS force field for hexapyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers and glycosidic linkage conformers. J Comput Chem 32:998–1032CrossRef Hansen HS, Hünenberger PH (2011) A reoptimized GROMOS force field for hexapyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers and glycosidic linkage conformers. J Comput Chem 32:998–1032CrossRef
Zurück zum Zitat Heiner AP, Teleman O (1997) Interface between monoclinic crystalline cellulose and water: Breakdown of the odd/even duplicity. Langmuir 13:511 – 518CrossRef Heiner AP, Teleman O (1997) Interface between monoclinic crystalline cellulose and water: Breakdown of the odd/even duplicity. Langmuir 13:511 – 518CrossRef
Zurück zum Zitat Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447CrossRef Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447CrossRef
Zurück zum Zitat Hori R, Wada M (2005) The thermal expansion of wood cellulose crystals. Cellulose 12:479–484CrossRef Hori R, Wada M (2005) The thermal expansion of wood cellulose crystals. Cellulose 12:479–484CrossRef
Zurück zum Zitat Hsieh YC, Yano H, Nogi M, Eichhorn SJ (2008) An estimation of the Young’s modulus of bacterial cellulose filaments. Cellulose 15:507–513CrossRef Hsieh YC, Yano H, Nogi M, Eichhorn SJ (2008) An estimation of the Young’s modulus of bacterial cellulose filaments. Cellulose 15:507–513CrossRef
Zurück zum Zitat Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38CrossRef Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38CrossRef
Zurück zum Zitat Ishikawa A, Okano T, Sugiyama J (1997) Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, III I and IV I . Polymer 38:463–468CrossRef Ishikawa A, Okano T, Sugiyama J (1997) Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, III I and IV I . Polymer 38:463–468CrossRef
Zurück zum Zitat Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromol 10:2571–2576CrossRef Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromol 10:2571–2576CrossRef
Zurück zum Zitat Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRef Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRef
Zurück zum Zitat Karplus M, Kushick JN (1981) Method for estimating the configurational entropy of macromolecules. Macromolecules 14:325–332CrossRef Karplus M, Kushick JN (1981) Method for estimating the configurational entropy of macromolecules. Macromolecules 14:325–332CrossRef
Zurück zum Zitat Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef
Zurück zum Zitat Kroon-Batenburg LMJ, Kroon J, Northolt MG (1986) Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibers. Polymer 27(10):290–292 Kroon-Batenburg LMJ, Kroon J, Northolt MG (1986) Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibers. Polymer 27(10):290–292
Zurück zum Zitat Lacks DJ, Rutledge GC (1994) Mechanisms for axial thermal contraction in polymer crystals: polyethylene vs isotactic polypropylene. Chem Eng Sci 49:2881–2888CrossRef Lacks DJ, Rutledge GC (1994) Mechanisms for axial thermal contraction in polymer crystals: polyethylene vs isotactic polypropylene. Chem Eng Sci 49:2881–2888CrossRef
Zurück zum Zitat Lins RD, Hünenberger PH (2005) A new Gromos force field for hexapyranose-based carbohydrates. J Comput Chem 26:1400–1412CrossRef Lins RD, Hünenberger PH (2005) A new Gromos force field for hexapyranose-based carbohydrates. J Comput Chem 26:1400–1412CrossRef
Zurück zum Zitat Matsuo M, Sawatari C, Iwai Y, Ozaki F (1990) Effect of orientation distribution and crystallinity on the measurement by X-ray diffraction of the crystal lattice moduli of cellulose I and II. Macromolecules 23:3266–3275CrossRef Matsuo M, Sawatari C, Iwai Y, Ozaki F (1990) Effect of orientation distribution and crystallinity on the measurement by X-ray diffraction of the crystal lattice moduli of cellulose I and II. Macromolecules 23:3266–3275CrossRef
Zurück zum Zitat Matthews JF, Bergenstråhle M, Beckham GT, Himmel ME, Nimlos MR, Brady JW, Crowley MF (2011) High temperature behavior of cellulose i. J Phys Chem B 115:2155–2166CrossRef Matthews JF, Bergenstråhle M, Beckham GT, Himmel ME, Nimlos MR, Brady JW, Crowley MF (2011) High temperature behavior of cellulose i. J Phys Chem B 115:2155–2166CrossRef
Zurück zum Zitat Miller R, Shenoy V (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11:139–147CrossRef Miller R, Shenoy V (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11:139–147CrossRef
Zurück zum Zitat Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef
Zurück zum Zitat Nakamoe K, Nishino T (1998) Molecular structure and the elastic modulus of the crystalline regions of cellulose polymorphs and their derivatives. Cellul Commun 5:73–78 Nakamoe K, Nishino T (1998) Molecular structure and the elastic modulus of the crystalline regions of cellulose polymorphs and their derivatives. Cellul Commun 5:73–78
Zurück zum Zitat Nakamura K, Wada M, Kuga S, Okano T (2004) Poisson’s ratio of cellulose Iβ and cellulose II. J Polymer Sci B 42:1206–1211CrossRef Nakamura K, Wada M, Kuga S, Okano T (2004) Poisson’s ratio of cellulose Iβ and cellulose II. J Polymer Sci B 42:1206–1211CrossRef
Zurück zum Zitat Neyertz S, Pizzi A, Merlin A, Maigret B, Brown D, Deglise X (2000) A new all-atom force field for crystalline cellulose I. J Appl Polym Sci 78:1939–1946CrossRef Neyertz S, Pizzi A, Merlin A, Maigret B, Brown D, Deglise X (2000) A new all-atom force field for crystalline cellulose I. J Appl Polym Sci 78:1939–1946CrossRef
Zurück zum Zitat Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline region of cellulose polymorphs. J Polym Sci B 33:1647–1651CrossRef Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline region of cellulose polymorphs. J Polym Sci B 33:1647–1651CrossRef
Zurück zum Zitat Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687CrossRef Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687CrossRef
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef
Zurück zum Zitat Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose I-beta. Biomacromolecules 9:3133–3140CrossRef Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose I-beta. Biomacromolecules 9:3133–3140CrossRef
Zurück zum Zitat Nishiyama Y, Langan P, Wada M, Forsyth VT (2010) Looking at hydrogen bonds in cellulose. Acta Cryst D66:1172–1177CrossRef Nishiyama Y, Langan P, Wada M, Forsyth VT (2010) Looking at hydrogen bonds in cellulose. Acta Cryst D66:1172–1177CrossRef
Zurück zum Zitat Reiling S, Brickmann J (1995) Theoretical investigations on the structure and physical properties of cellulose. Macromol Theory Simul 4:725–743CrossRef Reiling S, Brickmann J (1995) Theoretical investigations on the structure and physical properties of cellulose. Macromol Theory Simul 4:725–743CrossRef
Zurück zum Zitat Rutledge GC (1997) Thermomechanical properties of the crystal phase of poly(ethylene terephtalate) by molecular modeling. Macromol 30:2785–2791CrossRef Rutledge GC (1997) Thermomechanical properties of the crystal phase of poly(ethylene terephtalate) by molecular modeling. Macromol 30:2785–2791CrossRef
Zurück zum Zitat Rutledge GC, Suter UW (1991) Calculation of mechanical properties of poly(p-phenylene terephtalamide) by atomistic modelling. Polymer 32:2179–2189CrossRef Rutledge GC, Suter UW (1991) Calculation of mechanical properties of poly(p-phenylene terephtalamide) by atomistic modelling. Polymer 32:2179–2189CrossRef
Zurück zum Zitat Sakurada I, Ito T, Nakamae K (1964) Elastic moduli of polymer crystals for the chain axial directino. Makromol Chem 75:1–10CrossRef Sakurada I, Ito T, Nakamae K (1964) Elastic moduli of polymer crystals for the chain axial directino. Makromol Chem 75:1–10CrossRef
Zurück zum Zitat Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stree-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061CrossRef Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stree-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061CrossRef
Zurück zum Zitat Takahashi M, Takenaka H (1982) X-ray study of thermal expansion and transition of crystalline celluloses. Polym J 14:675–679CrossRef Takahashi M, Takenaka H (1982) X-ray study of thermal expansion and transition of crystalline celluloses. Polym J 14:675–679CrossRef
Zurück zum Zitat Tanaka F, Iwata T (2006) Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation. Cellulose 13:509–517CrossRef Tanaka F, Iwata T (2006) Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation. Cellulose 13:509–517CrossRef
Zurück zum Zitat Tashiro K, Kobayashi M (1991) Calculation of crystallite modulus of native cellulose. Polym Bull 14:213–218 Tashiro K, Kobayashi M (1991) Calculation of crystallite modulus of native cellulose. Polym Bull 14:213–218
Zurück zum Zitat Wada M, Hori R, Kim UJ, Sasaki S (2010) X-ray diffraction study on the thermal expansion behavior of cellulose iβ and its hig-temperature phase. Polym Degrad Stabil 95:1330–1334CrossRef Wada M, Hori R, Kim UJ, Sasaki S (2010) X-ray diffraction study on the thermal expansion behavior of cellulose iβ and its hig-temperature phase. Polym Degrad Stabil 95:1330–1334CrossRef
Zurück zum Zitat Wainwright SA, Biggs WD, Currey JD, Gosline JM (1976) Mechanical design in organisms. Princeton University Press, Princeton Wainwright SA, Biggs WD, Currey JD, Gosline JM (1976) Mechanical design in organisms. Princeton University Press, Princeton
Zurück zum Zitat Wu X, Moon RJ, Martini A (2011) Calculation of single chain cellulose elasticity using fully atomistic modeling. TAPPI J 10:37–42 Wu X, Moon RJ, Martini A (2011) Calculation of single chain cellulose elasticity using fully atomistic modeling. TAPPI J 10:37–42
Zurück zum Zitat Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155CrossRef Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155CrossRef
Zurück zum Zitat Zhang Q, Bulone V, Ågren H, Tu Y (2011) A molecular dynamics study of the thermal response of crystalline cellulose Iβ. Cellulose 18:207–221CrossRef Zhang Q, Bulone V, Ågren H, Tu Y (2011) A molecular dynamics study of the thermal response of crystalline cellulose Iβ. Cellulose 18:207–221CrossRef
Metadaten
Titel
Deformation of cellulose nanocrystals: entropy, internal energy and temperature dependence
verfasst von
Jakob Wohlert
Malin Bergenstråhle-Wohlert
Lars A. Berglund
Publikationsdatum
01.12.2012
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 6/2012
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-012-9774-5

Weitere Artikel der Ausgabe 6/2012

Cellulose 6/2012 Zur Ausgabe