Skip to main content
Erschienen in: Rare Metals 11/2017

29.06.2016

Dependence of α-phase size on flow stress during dynamic recrystallization steady state in Ti60 alloy

verfasst von: Hui Li, Zhang-Long Zhao, Hong-Zhen Guo, Yong-Quan Ning, Ze-Kun Yao, Kai Li

Erschienen in: Rare Metals | Ausgabe 11/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The dependence of α-phase size on flow stress was characterized by a proposed kinetic model during dynamic recrystallization (DRX) steady state in Ti60 alloy. According to the isothermal compression tests, the influence of deformation parameters on the steady-state flow stress was analyzed and the constitutive equation was established to predict the steady-state flow stress under different deformation temperatures and strain rates. A power-law relationship between the DRX average grain size and steady-state flow stress with an exponent of −2 is obtained from the dynamic balance during DRX steady state. The effect of deformation parameters on α-phase size was observed through the microstructure after deformation, and the applicability of the model for Ti60 alloy was verified by the comparison between predicted and experimental data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Weiss I, Semiatin SL. Thermomechanical processing of alpha titanium alloys—an overview. Mater Sci Eng A. 1999;263(2):243.CrossRef Weiss I, Semiatin SL. Thermomechanical processing of alpha titanium alloys—an overview. Mater Sci Eng A. 1999;263(2):243.CrossRef
[2]
Zurück zum Zitat Wang YL, Hui SX, Liu R, Ye WJ, Yu Y, Kayumov R. Dynamic response and plastic deformation behavior of Ti–5Al–2.5Sn ELI and Ti–8Al–1Mo–1V alloys under high-strain rate. Rare Met. 2014;33(2):127.CrossRef Wang YL, Hui SX, Liu R, Ye WJ, Yu Y, Kayumov R. Dynamic response and plastic deformation behavior of Ti–5Al–2.5Sn ELI and Ti–8Al–1Mo–1V alloys under high-strain rate. Rare Met. 2014;33(2):127.CrossRef
[3]
Zurück zum Zitat Wanjara P, Jahazi M, Monajati H, Yue S. Influence of thermomechanical processing on microstructural evolution in near-α alloy IMI834. Mater Sci Eng A. 2006;416(1–2):300.CrossRef Wanjara P, Jahazi M, Monajati H, Yue S. Influence of thermomechanical processing on microstructural evolution in near-α alloy IMI834. Mater Sci Eng A. 2006;416(1–2):300.CrossRef
[4]
Zurück zum Zitat Ma FC, Lu WJ, Qin JN, Zhang D. Microstructure evolution of near-α titanium alloys during thermomechanical processing. Mater Sci Eng A. 2006;416(1–2):59.CrossRef Ma FC, Lu WJ, Qin JN, Zhang D. Microstructure evolution of near-α titanium alloys during thermomechanical processing. Mater Sci Eng A. 2006;416(1–2):59.CrossRef
[5]
Zurück zum Zitat Lin YC, Chen XM, Wen DX, Chen MS. A physically-based constitutive model for a typical nickel-based superalloy. Comput Mater Sci. 2014;83:282.CrossRef Lin YC, Chen XM, Wen DX, Chen MS. A physically-based constitutive model for a typical nickel-based superalloy. Comput Mater Sci. 2014;83:282.CrossRef
[6]
Zurück zum Zitat Chen XM, Lin YC, Wen DX, Zhang JL, He M. Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation. Mater Des. 2014;57:568.CrossRef Chen XM, Lin YC, Wen DX, Zhang JL, He M. Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation. Mater Des. 2014;57:568.CrossRef
[7]
Zurück zum Zitat Al-Samman T, Gottstein G. Dynamic recrystallization during high temperature deformation of magnesium. Mater Sci Eng A. 2008;490(1–2):411.CrossRef Al-Samman T, Gottstein G. Dynamic recrystallization during high temperature deformation of magnesium. Mater Sci Eng A. 2008;490(1–2):411.CrossRef
[8]
Zurück zum Zitat Galindo-Nava EI, Rivera-Díaz-del-Castillo PEJ. Grain size evolution during discontinuous dynamic recrystallization. Scr Mater. 2014;72–73:1.CrossRef Galindo-Nava EI, Rivera-Díaz-del-Castillo PEJ. Grain size evolution during discontinuous dynamic recrystallization. Scr Mater. 2014;72–73:1.CrossRef
[9]
Zurück zum Zitat Cram DG, Zurob HS, Brechet YJM, Hutchinson CR. Modelling discontinuous dynamic recrystallization using a physically based model for nucleation. Acta Metall. 2009;57(17):5218. Cram DG, Zurob HS, Brechet YJM, Hutchinson CR. Modelling discontinuous dynamic recrystallization using a physically based model for nucleation. Acta Metall. 2009;57(17):5218.
[10]
Zurück zum Zitat Wang BX, Liu XH, Wang GD. Dynamic recrystallization behavior and microstructural evolution in a Mn–Cr gear steel. Mater Sci Eng A. 2005;393(1–2):102.CrossRef Wang BX, Liu XH, Wang GD. Dynamic recrystallization behavior and microstructural evolution in a Mn–Cr gear steel. Mater Sci Eng A. 2005;393(1–2):102.CrossRef
[11]
Zurück zum Zitat Momeni A, Ebrahimi GR, Jahazi M. Microstructure evolution at the onset of discontinuous dynamic recrystallization: a physics-based model of subgrain critical size. J Alloys Compd. 2014;587:199.CrossRef Momeni A, Ebrahimi GR, Jahazi M. Microstructure evolution at the onset of discontinuous dynamic recrystallization: a physics-based model of subgrain critical size. J Alloys Compd. 2014;587:199.CrossRef
[12]
Zurück zum Zitat Zhao ZL, Li H, Fu MW, Guo HZ, Yao ZK. Effect of the initial microstructure on the deformation behavior of Ti60 titanium alloy at high temperature processing. J Alloys Compd. 2014;617:525.CrossRef Zhao ZL, Li H, Fu MW, Guo HZ, Yao ZK. Effect of the initial microstructure on the deformation behavior of Ti60 titanium alloy at high temperature processing. J Alloys Compd. 2014;617:525.CrossRef
[13]
Zurück zum Zitat Jia WJ, Zeng WD, Liu JR, Zhou YG, Wang QJ. On the influence of processing parameters on microstructural evolution of a near alpha titanium alloy. Mater Sci Eng A. 2011;530:135.CrossRef Jia WJ, Zeng WD, Liu JR, Zhou YG, Wang QJ. On the influence of processing parameters on microstructural evolution of a near alpha titanium alloy. Mater Sci Eng A. 2011;530:135.CrossRef
[14]
Zurück zum Zitat Peng WW, Zeng WD, Wang QJ, Yu HQ. Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models. Mater Des. 2013;51:95.CrossRef Peng WW, Zeng WD, Wang QJ, Yu HQ. Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models. Mater Des. 2013;51:95.CrossRef
[15]
Zurück zum Zitat Lin YC, Chen XM. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des. 2011;32(4):1733.CrossRef Lin YC, Chen XM. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des. 2011;32(4):1733.CrossRef
[16]
Zurück zum Zitat Sellars CM, McTegart WJ. On the mechanism of hot deformation. Acta Metall. 1966;14(9):1136.CrossRef Sellars CM, McTegart WJ. On the mechanism of hot deformation. Acta Metall. 1966;14(9):1136.CrossRef
[17]
Zurück zum Zitat Zhang XY, Li MQ, Li H, Luo J, Su SB, Wang H. Deformation behavior in isothermal compression of the TC11 titanium alloy. Mater Des. 2010;31(6):2851.CrossRef Zhang XY, Li MQ, Li H, Luo J, Su SB, Wang H. Deformation behavior in isothermal compression of the TC11 titanium alloy. Mater Des. 2010;31(6):2851.CrossRef
[18]
Zurück zum Zitat Derby B. The dependence of grain size on stress during dynamic recrystallisation. Acta Metall Mater. 1991;39(5):955.CrossRef Derby B. The dependence of grain size on stress during dynamic recrystallisation. Acta Metall Mater. 1991;39(5):955.CrossRef
[19]
Zurück zum Zitat Faver J, Fabrègue D, Piot D, Tang N, Koizumi Y, Maire E, Chiba A. Modeling grain boundary motion and dynamic recrystallization in pure metals. Metall Mater Trans A. 2013;44(13):5861.CrossRef Faver J, Fabrègue D, Piot D, Tang N, Koizumi Y, Maire E, Chiba A. Modeling grain boundary motion and dynamic recrystallization in pure metals. Metall Mater Trans A. 2013;44(13):5861.CrossRef
[20]
Zurück zum Zitat Chen F, Cui ZS, Liu J, Chen W, Chen SJ. Mesoscale simulation of the high-temperature austenitizing and dynamic recrystallization by coupling a cellular automaton with a topology deformation technique. Mater Sci Eng A. 2010;527(21–22):5539.CrossRef Chen F, Cui ZS, Liu J, Chen W, Chen SJ. Mesoscale simulation of the high-temperature austenitizing and dynamic recrystallization by coupling a cellular automaton with a topology deformation technique. Mater Sci Eng A. 2010;527(21–22):5539.CrossRef
[21]
Zurück zum Zitat Picu RC, Majorell A. Mechanical behavior of Ti–6Al–4V at high and moderate temperatures-part II: constitutive modeling. Mater Sci Eng A. 2002;326(2):306.CrossRef Picu RC, Majorell A. Mechanical behavior of Ti–6Al–4V at high and moderate temperatures-part II: constitutive modeling. Mater Sci Eng A. 2002;326(2):306.CrossRef
[22]
Zurück zum Zitat Mecking H, Kocks UF. Kinetics of flow and strain-hardening. Acta Metall. 1981;29(11):1865.CrossRef Mecking H, Kocks UF. Kinetics of flow and strain-hardening. Acta Metall. 1981;29(11):1865.CrossRef
[23]
Zurück zum Zitat Estrin Y. Dislocation theory based constitutive modelling: foundations and applications. J Mater Process Technol. 1998;80–81:33.CrossRef Estrin Y. Dislocation theory based constitutive modelling: foundations and applications. J Mater Process Technol. 1998;80–81:33.CrossRef
[24]
Zurück zum Zitat OuYang DL, Fu MW, Lu SQ. Study on the dynamic recrystallization behavior of Ti-alloy Ti–10V–2Fe–3V in β processing via experiment and simulation. Mater Sci Eng A. 2014;619:26.CrossRef OuYang DL, Fu MW, Lu SQ. Study on the dynamic recrystallization behavior of Ti-alloy Ti–10V–2Fe–3V in β processing via experiment and simulation. Mater Sci Eng A. 2014;619:26.CrossRef
[25]
Zurück zum Zitat Roters F, Raabe D, Gottstein G. Work hardening in heterogeneous alloys—a microstructural approach based on three internal state variables. Acta Mater. 2000;48(17):4181.CrossRef Roters F, Raabe D, Gottstein G. Work hardening in heterogeneous alloys—a microstructural approach based on three internal state variables. Acta Mater. 2000;48(17):4181.CrossRef
Metadaten
Titel
Dependence of α-phase size on flow stress during dynamic recrystallization steady state in Ti60 alloy
verfasst von
Hui Li
Zhang-Long Zhao
Hong-Zhen Guo
Yong-Quan Ning
Ze-Kun Yao
Kai Li
Publikationsdatum
29.06.2016
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 11/2017
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-016-0761-0

Weitere Artikel der Ausgabe 11/2017

Rare Metals 11/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.