Skip to main content
Erschienen in: Pattern Recognition and Image Analysis 3/2020

01.07.2020 | MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

Descriptive Image Analysis: Part III. Multilevel Model for Algorithms and Initial Data Combining in Pattern Recognition

verfasst von: I. B. Gurevich, V. V. Yashina

Erschienen in: Pattern Recognition and Image Analysis | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This is the third article in a series of publications devoted to the current state and future prospects of Descriptive Image Analysis (DIA), one of the leading and intensively developing branches of modern mathematical theory of image analysis. The fundamental problem of computer science touched by the article is the automation of extracting from images of information necessary for intellectual decision-making. A new class of models for the image analysis and recognition process and its constituent procedures is introduced and described – a multilevel model of image analysis and recognition procedures (MMCAI) – which is based on the joint use of methods of combining algorithms and methods of combining fragmentary initial data – partial descriptions of the object of analysis and recognition – an image. The architecture, functionality, limitations, and characteristics of the MMCAI are justified and defined. The main properties of the MMCAI class are as follows: (a) combining the fragments of the initial data and their representations and combining algorithms at all levels of image analysis and recognition processes; (b) the use of multialgorithmic schemes in the image analysis and recognition process; and (c) the use of dual representations of images as input data for the analysis and recognition algorithms. The problems arising in the development of the MMCAI are closely related to the development of the following areas of the modern mathematical theory of image analysis: (a) algebraization of image analysis; (b) image recognition algorithms accepting spatial information as input data; (c) multiple classifiers (MACs). A new class of models for image analysis is introduced in order to provide the following possibilities: (a) standardization, modeling, and optimization of Descriptive Algorithmic Schemes (DAS) that form the brainware of the MMCAI and processing heterogeneous ill-structured information – dual representations – spatial, symbolic, and numerical representations of the initial data; (b) comparative analysis, standardization, modeling, and optimization of different algorithms for the analysis and recognition of spatial information. The fundamental importance of the results of these studies for the development of the mathematical theory of image analysis and their scientific novelty are associated with the statement of problems and the development of methods for modeling the processes of automation of image analysis when ill structured representations of images, including spatial data proper – images and their fragments, image models, incompletely formalized representations, and subsets of combinations of these representations – are used as the initial data. The introduction of the MMCAI as a standard structure for representing algorithms for the analysis and recognition of two-dimensional information and dual representations of images allow one to generalize and substantiate well-known heuristic recognition algorithms and assess their mathematical properties and applied utility.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded Up Robust Features,” in Computer Vision − ECCV 2006, Proc. 9th European Conference on Computer Vision, Graz, Austria, May 7–13, 2006, Part I, Ed. by A. Leonardis, H. Bischof, and A. Pinz, Lecture Notes in Computer Science (Springer, Berlin, Heidelberg, 2006), Vol. 3951, pp. 404–417. H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded Up Robust Features,” in Computer VisionECCV 2006, Proc. 9th European Conference on Computer Vision, Graz, Austria, May 7–13, 2006, Part I, Ed. by A. Leonardis, H. Bischof, and A. Pinz, Lecture Notes in Computer Science (Springer, Berlin, Heidelberg, 2006), Vol. 3951, pp. 404–417.
2.
Zurück zum Zitat S. Belongie, J. Malik. and J. Puzicha, “Shape matching and object recognition using shape contexts,” IEEE Trans. Pattern Anal. Mach. Intell. 24 (4), 509–522 (2002).CrossRef S. Belongie, J. Malik. and J. Puzicha, “Shape matching and object recognition using shape contexts,” IEEE Trans. Pattern Anal. Mach. Intell. 24 (4), 509–522 (2002).CrossRef
3.
Zurück zum Zitat M. Castrillón, O.Déniz, D. Hernández, and J. Lorenzo, “A comparison of face and facial feature detectors based on the Viola–Jones general object detection framework,” Mach. Vision Appl. 22 (3), 481–494 (2011). M. Castrillón, O.Déniz, D. Hernández, and J. Lorenzo, “A comparison of face and facial feature detectors based on the Viola–Jones general object detection framework,” Mach. Vision Appl. 22 (3), 481–494 (2011).
4.
Zurück zum Zitat F. C. Crow, “Summed-area tables for texture mapping,” ACM SIGGRAPH Comput. Graphics 18 (3), 207–212 (1984).CrossRef F. C. Crow, “Summed-area tables for texture mapping,” ACM SIGGRAPH Comput. Graphics 18 (3), 207–212 (1984).CrossRef
5.
Zurück zum Zitat N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Proc. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005) (San Diego, CA, 2005), Vol. 1, pp. 886–893. N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Proc. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005) (San Diego, CA, 2005), Vol. 1, pp. 886–893.
6.
Zurück zum Zitat Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” in Computational Learning Theory, EuroCOLT 1995, Ed. by P. Vitányi, Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence) (Springer Berlin, Heidelberg, 1995), Vol. 904, pp. 23–37. Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” in Computational Learning Theory, EuroCOLT 1995, Ed. by P. Vitányi, Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence) (Springer Berlin, Heidelberg, 1995), Vol. 904, pp. 23–37.
7.
Zurück zum Zitat Y. Freund and R. E. Schapire, “A short introduction to boosting,” J. Jpn. Soc. Artif. Intell. 14 (5), 771–780 (1999). Y. Freund and R. E. Schapire, “A short introduction to boosting,” J. Jpn. Soc. Artif. Intell. 14 (5), 771–780 (1999).
8.
Zurück zum Zitat Y. Freund, “A more robust boosting algorithm,” arXiv preprint arXiv:0905.2138 (2009). http://arxiv.org/abs/0905.2138. Y. Freund, “A more robust boosting algorithm,” arXiv preprint arXiv:0905.2138 (2009). http://​arxiv.​org/​abs/​0905.​2138.​
9.
Zurück zum Zitat U. Grenander and M. Miller, Pattern Theory: From Representation to Inference (Oxford University Press, New York, 2007).MATH U. Grenander and M. Miller, Pattern Theory: From Representation to Inference (Oxford University Press, New York, 2007).MATH
10.
Zurück zum Zitat I. B. Gurevitch, “Image analysis by the reversible algebraic closure method,” in Problems of Artificial Intelligence and Pattern Recognition: Proceedings of the Scientific Conference with Participation of Scientists from Socialistic Countries (Kiev, May 13–18, 1984), Section 2: Pattern Recognition (V. M. Glushkov Institute of Cybernetics of the Academy of Sciences of the Ukrainian SSR, Kiev, 1984), pp. 41–43 [in Russian]. I. B. Gurevitch, “Image analysis by the reversible algebraic closure method,” in Problems of Artificial Intelligence and Pattern Recognition: Proceedings of the Scientific Conference with Participation of Scientists from Socialistic Countries (Kiev, May 13–18, 1984), Section 2: Pattern Recognition (V. M. Glushkov Institute of Cybernetics of the Academy of Sciences of the Ukrainian SSR, Kiev, 1984), pp. 41–43 [in Russian].
11.
Zurück zum Zitat I. B. Gurevitch, “The definition of the class of 2D-algorithms based on estimates calculation for image recognition problems,” in Methods and Means of Graphic Information Processing: Interuniversity Collection of Papers, Ed. by Yu. G. Vasin (N. I. Lobachevsky State University, Gorky, 1986), pp. 47–66 [in Russian]. I. B. Gurevitch, “The definition of the class of 2D-algorithms based on estimates calculation for image recognition problems,” in Methods and Means of Graphic Information Processing: Interuniversity Collection of Papers, Ed. by Yu. G. Vasin (N. I. Lobachevsky State University, Gorky, 1986), pp. 47–66 [in Russian].
12.
Zurück zum Zitat I. B. Gurevitch, “The descriptive framework for an image recognition problem,” in Proc. 6th Scandinavian Conference on Image Analysis (Oulu, June 19–22,1989); in 2 volumes (Pattern Recognition Society of Finland, 1989), Vol. 1, pp. 220–227. I. B. Gurevitch, “The descriptive framework for an image recognition problem,” in Proc. 6th Scandinavian Conference on Image Analysis (Oulu, June 1922,1989); in 2 volumes (Pattern Recognition Society of Finland, 1989), Vol. 1, pp. 220–227.
13.
Zurück zum Zitat I. B. Gurevich and I. A. Jernova, “The joint use of image equivalence and image invariance in image recognition,” Pattern Recogn. Image Anal. 13 (4), 570–578 (2003). I. B. Gurevich and I. A. Jernova, “The joint use of image equivalence and image invariance in image recognition,” Pattern Recogn. Image Anal. 13 (4), 570–578 (2003).
14.
Zurück zum Zitat I. Gurevich, “The descriptive approach to image analysis current state and prospects,” in Image Analysis, Proc. 14th Scandinavian Conference, SCIA2005, Joensuu, Finland, June 2005, Ed. by H. Kalviainen, J. Parkkinen, and A. Kaarna, Lecture Notes in Computer Science (Springer, Berlin, Heidelberg, 2005), Vol. 3540, pp. 214–223. I. Gurevich, “The descriptive approach to image analysis current state and prospects,” in Image Analysis, Proc. 14th Scandinavian Conference, SCIA2005, Joensuu, Finland, June 2005, Ed. by H. Kalviainen, J. Parkkinen, and A. Kaarna, Lecture Notes in Computer Science (Springer, Berlin, Heidelberg, 2005), Vol. 3540, pp. 214–223.
15.
Zurück zum Zitat I. B. Gurevich and A. V. Nefyodov, “Block diagram representation of a 2D-AEC algorithm with rectangular support sets,” Pattern Recogn. Image Anal. 15 (1), 187–191 (2005). I. B. Gurevich and A. V. Nefyodov, “Block diagram representation of a 2D-AEC algorithm with rectangular support sets,” Pattern Recogn. Image Anal. 15 (1), 187–191 (2005).
16.
Zurück zum Zitat I. B. Gurevich and V. V. Yashina, “Computer-aided image analysis based on the concepts of invariance and equivalence,” Pattern Recogn. Image Anal. 16 (4), 564–589 (2006).CrossRef I. B. Gurevich and V. V. Yashina, “Computer-aided image analysis based on the concepts of invariance and equivalence,” Pattern Recogn. Image Anal. 16 (4), 564–589 (2006).CrossRef
17.
Zurück zum Zitat I. B. Gurevich and V. V. Yashina, “Descriptive approach to image analysis: Image models,” Pattern Recogn. Image Anal. 18 (4), 518–541 (2008).CrossRef I. B. Gurevich and V. V. Yashina, “Descriptive approach to image analysis: Image models,” Pattern Recogn. Image Anal. 18 (4), 518–541 (2008).CrossRef
18.
Zurück zum Zitat I. B. Gurevich and V. V. Yashina, “Descriptive approach to image analysis: Image formalization space,” Pattern Recogn. Image Anal. 22 (4), 495–518 (2012).CrossRef I. B. Gurevich and V. V. Yashina, “Descriptive approach to image analysis: Image formalization space,” Pattern Recogn. Image Anal. 22 (4), 495–518 (2012).CrossRef
19.
Zurück zum Zitat I. B. Gurevich and V. V. Yashina, “Descriptive image analysis. Genesis and current trends,” Pattern Recogn. Image Anal. 27 (4), 653–674 (2017).CrossRef I. B. Gurevich and V. V. Yashina, “Descriptive image analysis. Genesis and current trends,” Pattern Recogn. Image Anal. 27 (4), 653–674 (2017).CrossRef
20.
Zurück zum Zitat I. B. Gurevich and V. V. Yashina, “Descriptive image analysis. Foundations and descriptive image algebras,” Int. J. Pattern Recogn. Artif. Intell. 33 (11), 1940018-1 – 1940018-25 (2019). I. B. Gurevich and V. V. Yashina, “Descriptive image analysis. Foundations and descriptive image algebras,” Int. J. Pattern Recogn. Artif. Intell. 33 (11), 1940018-1 – 1940018-25 (2019).
21.
Zurück zum Zitat I. B. Gurevich and V. V. Yashina, “Descriptive image analysis: Part II. Descriptive image models,” Pattern Recogn. Image Anal. 29 (4), 598–612 (2019).CrossRef I. B. Gurevich and V. V. Yashina, “Descriptive image analysis: Part II. Descriptive image models,” Pattern Recogn. Image Anal. 29 (4), 598–612 (2019).CrossRef
22.
Zurück zum Zitat D. Hefenbrock, J. Oberg, N. T. N. Thanh, et al., “Accelerating Viola-Jones face detection to FPGA-level using GPUs,” in Proc. 2010 18th IEEE Annual Int. Symp. on Field-Programmable Custom Computing Machines (FCCM 2010) (Charlotte, NC, 2010). pp. 11–18. D. Hefenbrock, J. Oberg, N. T. N. Thanh, et al., “Accelerating Viola-Jones face detection to FPGA-level using GPUs,” in Proc. 2010 18th IEEE Annual Int. Symp. on Field-Programmable Custom Computing Machines (FCCM 2010) (Charlotte, NC, 2010). pp. 11–18.
23.
Zurück zum Zitat P. Ithaya Rani and K. Muneeswaran, “Robust real time face detection automatically from video sequence based on Haar features,” in Proc. 2014 Int. Conf. on Communication and Network Technologies (ICCNT) (Sivakasi, India, 2014), pp. 276–280. P. Ithaya Rani and K. Muneeswaran, “Robust real time face detection automatically from video sequence based on Haar features,” in Proc. 2014 Int. Conf. on Communication and Network Technologies (ICCNT) (Sivakasi, India, 2014), pp. 276–280.
24.
Zurück zum Zitat J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On combining classifiers,” IEEE Trans. Pattern Anal. Mach. Intell. 20 (3), 226–239 (1998).CrossRef J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On combining classifiers,” IEEE Trans. Pattern Anal. Mach. Intell. 20 (3), 226–239 (1998).CrossRef
25.
Zurück zum Zitat U. Köthe, A. Montanvert, and P. Soille (Eds.), Applications of Discrete Geometry and Mathematical Morphology, Lecture Notes in Computer Science (Springer, Berlin, Heidelberg, 2012), Vol. 7346. U. Köthe, A. Montanvert, and P. Soille (Eds.), Applications of Discrete Geometry and Mathematical Morphology, Lecture Notes in Computer Science (Springer, Berlin, Heidelberg, 2012), Vol. 7346.
26.
Zurück zum Zitat L. Lam and C. Y. Suen, “Optimal combinations of pattern classifiers,” Pattern Recogn. Lett. 16 (9), 945–954 (1995).CrossRef L. Lam and C. Y. Suen, “Optimal combinations of pattern classifiers,” Pattern Recogn. Lett. 16 (9), 945–954 (1995).CrossRef
27.
Zurück zum Zitat L. Lam and C. Y. Suen, “Application of majority voting to pattern recognition: An analysis of its behavior and performance,” IEEE Trans. Syst. Man Cybern. A 27 (5), 553–568 (1997).CrossRef L. Lam and C. Y. Suen, “Application of majority voting to pattern recognition: An analysis of its behavior and performance,” IEEE Trans. Syst. Man Cybern. A 27 (5), 553–568 (1997).CrossRef
28.
Zurück zum Zitat D. G. Lowe, “Object recognition from local scale-invariant features,” in Proc. 7th IEEE Int. Conf. on Computer Vision (ICCV’99) (Kerkyra, Greece, 1999), Vol. 2, pp. 1150–1157. D. G. Lowe, “Object recognition from local scale-invariant features,” in Proc. 7th IEEE Int. Conf. on Computer Vision (ICCV99) (Kerkyra, Greece, 1999), Vol. 2, pp. 1150–1157.
29.
Zurück zum Zitat D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vision 60 (2), 91–110 (2004).CrossRef D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vision 60 (2), 91–110 (2004).CrossRef
30.
Zurück zum Zitat P. Maragos, “Algebraic and PDE approaches for lattice scale-spaces with global constraints,” Int. J. Comput. Vision 52 (2/3), 121–137 (2003).CrossRef P. Maragos, “Algebraic and PDE approaches for lattice scale-spaces with global constraints,” Int. J. Comput. Vision 52 (2/3), 121–137 (2003).CrossRef
31.
Zurück zum Zitat T. M. Murphy, R. Broussard, R. Schultz, et al., “A Viola-Jones based hybrid face detection framework,” in Intelligent Robots and Computer Vision XXXI: Algorithms and Techniques, IS&T/SPIE Electronic Imaging, 2014, Proc. SPIE 9025, 902509, 1–11 (2014). T. M. Murphy, R. Broussard, R. Schultz, et al., “A Viola-Jones based hybrid face detection framework,” in Intelligent Robots and Computer Vision XXXI: Algorithms and Techniques, IS&T/SPIE Electronic Imaging, 2014, Proc. SPIE 9025, 902509, 1–11 (2014).
32.
Zurück zum Zitat T. M. Murphy, R. Broussard, R. Schultz, R. Rakvic, and H. Ngo, “Face detection with a Viola–Jones based hybrid network,” IET Biom. 6 (3), 200–210 (2017).CrossRef T. M. Murphy, R. Broussard, R. Schultz, R. Rakvic, and H. Ngo, “Face detection with a Viola–Jones based hybrid network,” IET Biom. 6 (3), 200–210 (2017).CrossRef
33.
Zurück zum Zitat A. Opelt and A. Zisserman, “A Boundary-Fragment-Model for object detection,” in Computer Vision − ECCV 2006, Part I, Ed. by A. Leonardis, H. Bischof, and A. Pinz, Lecture Notes in Computer Science (Springer, Berlin, Heidelberg, 2006), Vol. 3952, pp. 575–578. A. Opelt and A. Zisserman, “A Boundary-Fragment-Model for object detection,” in Computer VisionECCV 2006, Part I, Ed. by A. Leonardis, H. Bischof, and A. Pinz, Lecture Notes in Computer Science (Springer, Berlin, Heidelberg, 2006), Vol. 3952, pp. 575–578.
34.
Zurück zum Zitat C. P. Papageorgiou, M. Oren, and T. Poggio, “A general framework for object detection,” in Proc. 6th Int. Conf. on Computer Vision (ICCV) (Bombay, India, January 4-7, 1998), pp. 555–562. C. P. Papageorgiou, M. Oren, and T. Poggio, “A general framework for object detection,” in Proc. 6th Int. Conf. on Computer Vision (ICCV) (Bombay, India, January 4-7, 1998), pp. 555–562.
35.
Zurück zum Zitat M. D. Putro, T. B. Adji, and B. Winduratna, “Adult image classifiers based on face detection using Viola-Jones method,” in Proc. 1st Int. Conf. on Wireless and Telematics (ICWT) (Manado, Indonesia, 2015), pp. 1–6. M. D. Putro, T. B. Adji, and B. Winduratna, “Adult image classifiers based on face detection using Viola-Jones method,” in Proc. 1st Int. Conf. on Wireless and Telematics (ICWT) (Manado, Indonesia, 2015), pp. 1–6.
36.
Zurück zum Zitat B. Radunacu, M. Graña, and F. X. Albizuri, “Morphological scale spaces and associative morphological memories: Results on robustness and practical applications,” J. Math. Imaging Vision 19 (2), 113–131 (2003).MathSciNetCrossRef B. Radunacu, M. Graña, and F. X. Albizuri, “Morphological scale spaces and associative morphological memories: Results on robustness and practical applications,” J. Math. Imaging Vision 19 (2), 113–131 (2003).MathSciNetCrossRef
37.
Zurück zum Zitat G. X. Ritter and J. N. Wilson, Handbook of Computer Vision Algorithms in Image Algebra, 2nd ed. (CRC Press, Boca Raton, FL, 2001).MATH G. X. Ritter and J. N. Wilson, Handbook of Computer Vision Algorithms in Image Algebra, 2nd ed. (CRC Press, Boca Raton, FL, 2001).MATH
38.
Zurück zum Zitat H. A. Rowley, S. Baluja, and T. Kanade, “Human face detection in visual scenes,” in Advances in Neural Information Processing Systems 8: Proc. NIPS 1995 Conf. (Denver, CO, 1995) (MIT Press, Cambridge, 1996), pp. 875–881. H. A. Rowley, S. Baluja, and T. Kanade, “Human face detection in visual scenes,” in Advances in Neural Information Processing Systems 8: Proc. NIPS 1995 Conf. (Denver, CO, 1995) (MIT Press, Cambridge, 1996), pp. 875–881.
39.
Zurück zum Zitat N. Sethi and A. Aggarwal, “Robust face detection and tracking using Pyramidal Lucas Kanade Tracker algorithm,” Int. J. Comp. Tech. Appl. 2 (5), 1432–1438 (2011). N. Sethi and A. Aggarwal, “Robust face detection and tracking using Pyramidal Lucas Kanade Tracker algorithm,” Int. J. Comp. Tech. Appl. 2 (5), 1432–1438 (2011).
40.
Zurück zum Zitat K. Smith, A. Carleton, and V. Lepetit, “Fast Ray features for learning irregular shapes,” in Proc. 2009 IEEE 12th Int. Conf. on Computer Vision (ICCV) (Kyoto, Japan, 2009), pp. 397–404. K. Smith, A. Carleton, and V. Lepetit, “Fast Ray features for learning irregular shapes,” in Proc. 2009 IEEE 12th Int. Conf. on Computer Vision (ICCV) (Kyoto, Japan, 2009), pp. 397–404.
41.
Zurück zum Zitat P. Soille, Morphological Image Analysis. Principles and Applications, 2nd ed. (Springer, Berlin, Heidelberg, 2004).CrossRef P. Soille, Morphological Image Analysis. Principles and Applications, 2nd ed. (Springer, Berlin, Heidelberg, 2004).CrossRef
42.
Zurück zum Zitat C. Y. Suen, C. Nadal, T. A. Mai, R. Legault, and L. Lam, “Recognition of totally unconstrained handwritten numerals based on the concept of multiple experts,” in Frontiers in Handwriting Recognition, Proc. 1st International Workshop IWFHR’90 (Montréal, Canada, April 1990), Ed. by C. Y. Suen (CENPARMI, Montréal, 1990), pp. 131–143. C. Y. Suen, C. Nadal, T. A. Mai, R. Legault, and L. Lam, “Recognition of totally unconstrained handwritten numerals based on the concept of multiple experts,” in Frontiers in Handwriting Recognition, Proc. 1st International Workshop IWFHR90 (Montréal, Canada, April 1990), Ed. by C. Y. Suen (CENPARMI, Montréal, 1990), pp. 131–143.
43.
Zurück zum Zitat C. Y. Suen, C. P. Nadal, R. Legault, T. A. Mai, and L. Lam, “Computer recognition of unconstrained handwritten numerals,” Proc. IEEE 80 (7), 1162–1180 (1992).CrossRef C. Y. Suen, C. P. Nadal, R. Legault, T. A. Mai, and L. Lam, “Computer recognition of unconstrained handwritten numerals,” Proc. IEEE 80 (7), 1162–1180 (1992).CrossRef
44.
Zurück zum Zitat C. Y. Suen and L. Lam, “Multiple classifier combination methodologies for different output levels,” in Multiple Classifier Systems, MCS 2000, Ed. by J. Kittler and F. Roli, Lecture Notes in Computer Science (Springer, Berlin, Heidelberg, 2000), Vol. 1857, pp. 52–66. C. Y. Suen and L. Lam, “Multiple classifier combination methodologies for different output levels,” in Multiple Classifier Systems, MCS 2000, Ed. by J. Kittler and F. Roli, Lecture Notes in Computer Science (Springer, Berlin, Heidelberg, 2000), Vol. 1857, pp. 52–66.
45.
Zurück zum Zitat P. Viola and M. J. Jones, “Robust real-time object detection,” in Proc. 2nd International Workshop on Statistical and Computational Theories of Vision — Modeling, Learning, Computing, and Sampling (Vancouver, Canada, July 13, 2001), pp. 1–25. P. Viola and M. J. Jones, “Robust real-time object detection,” in Proc. 2nd International Workshop on Statistical and Computational Theories of VisionModeling, Learning, Computing, and Sampling (Vancouver, Canada, July 13, 2001), pp. 1–25.
46.
Zurück zum Zitat P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” in Proc. 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001) (Kauai, HI, 2001), Vol. 1, pp. I-511 – I-518. P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” in Proc. 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001) (Kauai, HI, 2001), Vol. 1, pp. I-511 – I-518.
47.
Zurück zum Zitat P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J. Comput. Vision 57 (2), 137–154 (2004).CrossRef P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J. Comput. Vision 57 (2), 137–154 (2004).CrossRef
48.
Zurück zum Zitat Y. S. Huang and C. Y. Suen, “A method of combining multiple experts for the recognition of unconstrained handwritten numerals,” IEEE Trans. Pattern Anal. Mach. Intell. 17 (1), 90–94 (1995).CrossRef Y. S. Huang and C. Y. Suen, “A method of combining multiple experts for the recognition of unconstrained handwritten numerals,” IEEE Trans. Pattern Anal. Mach. Intell. 17 (1), 90–94 (1995).CrossRef
49.
Zurück zum Zitat L.-B. Zhou, H. Wang, W. Mou, and Z.-C. Hu, “Robust face detection and tracking under natural conditions,” in Proc. 2013 IEEE Int. Conf. on Robotics and Biomimetics (ROBIO) (Shenzhen, China, 2013), pp. 934–939. L.-B. Zhou, H. Wang, W. Mou, and Z.-C. Hu, “Robust face detection and tracking under natural conditions,” in Proc. 2013 IEEE Int. Conf. on Robotics and Biomimetics (ROBIO) (Shenzhen, China, 2013), pp. 934–939.
50.
Zurück zum Zitat Yu. I. Zhuravlev and V. V. Nikiforov, “Recognition algorithms based on computation of estimates,” Cybern. 7 (3), 387–400 (1971).CrossRef Yu. I. Zhuravlev and V. V. Nikiforov, “Recognition algorithms based on computation of estimates,” Cybern. 7 (3), 387–400 (1971).CrossRef
51.
Zurück zum Zitat Yu. I. Zhuravlev, “An algebraic approach to recognition and classification problems,” Pattern Recogn. Image Anal. 8, 59–100 (1998). Yu. I. Zhuravlev, “An algebraic approach to recognition and classification problems,” Pattern Recogn. Image Anal. 8, 59–100 (1998).
52.
Zurück zum Zitat 2018 24th International Conference on Pattern Recognition (ICPR 2018), Beijing, China, August 20–24, 2018 (IEEE Computer Society, 2018), ISBN 978-1-5386-3788-3. 2018 24th International Conference on Pattern Recognition (ICPR 2018), Beijing, China, August 20–24, 2018 (IEEE Computer Society, 2018), ISBN 978-1-5386-3788-3.
53.
Zurück zum Zitat 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019), Long Beach, CA, USA, June 15–20, 2019 (IEEE Computer Society, 2019), ISBN: 978-1-7281-3293-8. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019), Long Beach, CA, USA, June 15–20, 2019 (IEEE Computer Society, 2019), ISBN: 978-1-7281-3293-8.
54.
Zurück zum Zitat 15th European Conference on Computer Vision, ECCV 2018, Munich, Germany, September 8-14, 2018, Proceedings, Parts I–XVI, Lecture Notes in Computer Science (Springer, Cham, 2018), Vols. 11205–11220. 15th European Conference on Computer Vision, ECCV 2018, Munich, Germany, September 8-14, 2018, Proceedings, Parts I–XVI, Lecture Notes in Computer Science (Springer, Cham, 2018), Vols. 11205–11220.
55.
Zurück zum Zitat 21st Scandinavian Conference on Image Analysis, SCIA 2019, Norrköping, Sweden, June 11–13, 2019, Proceedings, Lecture Notes in Computer Science (Springer, Cham, 2019), Vol. 11482. 21st Scandinavian Conference on Image Analysis, SCIA 2019, Norrköping, Sweden, June 11–13, 2019, Proceedings, Lecture Notes in Computer Science (Springer, Cham, 2019), Vol. 11482.
56.
Zurück zum Zitat 14th International Conference on Pattern Recognition and Information Processing, PRIP 2019, Minsk, Belarus, May 21–23, 2019, Revised Selected Papers, Communications in Computer and Information Science (Springer, Cham, 2019), Vol. 1055. 14th International Conference on Pattern Recognition and Information Processing, PRIP 2019, Minsk, Belarus, May 21–23, 2019, Revised Selected Papers, Communications in Computer and Information Science (Springer, Cham, 2019), Vol. 1055.
57.
Zurück zum Zitat 24th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2019, Havana, Cuba, October 28–31, 2019, Proceedings, Lecture Notes in Computer Science (Springer, Cham, 2019), Vol. 11896. 24th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2019, Havana, Cuba, October 28–31, 2019, Proceedings, Lecture Notes in Computer Science (Springer, Cham, 2019), Vol. 11896.
58.
Zurück zum Zitat 11th International Conference on Pattern Recognition and Image Analysis: New Information Technologies (PRIA–11–2013), Samara, Russia, September 23–28, 2013, Conference Proceedings (IPSI RAS, Samara, 2013), Vols. I–II. 11th International Conference on Pattern Recognition and Image Analysis: New Information Technologies (PRIA112013), Samara, Russia, September 23–28, 2013, Conference Proceedings (IPSI RAS, Samara, 2013), Vols. I–II.
Metadaten
Titel
Descriptive Image Analysis: Part III. Multilevel Model for Algorithms and Initial Data Combining in Pattern Recognition
verfasst von
I. B. Gurevich
V. V. Yashina
Publikationsdatum
01.07.2020
Verlag
Pleiades Publishing
Erschienen in
Pattern Recognition and Image Analysis / Ausgabe 3/2020
Print ISSN: 1054-6618
Elektronische ISSN: 1555-6212
DOI
https://doi.org/10.1134/S1054661820030086

Weitere Artikel der Ausgabe 3/2020

Pattern Recognition and Image Analysis 3/2020 Zur Ausgabe

ARTIFICIAL INTELLIGENCE TECHNIQUES IN PATTERN RECOGNITION AND IMAGE ANALYSIS

Hierarchization of Topical Texts Based on the Estimate of Proximity to the Semantic Pattern without Paraphrasing