Skip to main content
Erschienen in: Microsystem Technologies 11/2019

24.07.2019 | Technical Paper

Design and analysis of microcantilever beams based on arrow shape

verfasst von: Akarapu Ashok, Rohit Prakash Nighot, Nagesh Kumar Sahu, Prem Pal, Ashok Kumar Pandey

Erschienen in: Microsystem Technologies | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we present the design and analysis of microcantilever beams based on arrow shape. Effect of rectangular step length and width as well as free end width of beam have been investigated on various characteristics of proposed microcantilever beams. The proposed microcantilever beams were fabricated from silicon dioxide material using wet bulk micromachining in 25 wt.% TMAH at 75 °C. Vibration analysis of the microcantilever beams was carried out using a laser vibrometer. A FEM software, ANSYS, was used primarily for numerical analysis of resonance frequency, and to examine the effect of rectangular step length as well as free end width of microcantilever beam on its resonance frequency. Furthermore, ANSYS was employed to determine the maximum deflection, torsional end rotation and quality factor of proposed microcantilever beams. Additionally, effects of bottom gap and rectangular step length on quality factor of proposed microcantilever beams at lower and higher bottom gaps have also been investigated. The fundamental transverse bending mode frequency for a proposed microcantilever beam comprising rectangular step length of 50 μm and free end width 0 μm is approximately 48% higher than that of the conventional rectangular profile microcantilever beam of width 40 μm. Furthermore, maximum deflection and torsional end rotation obtained for a proposed microcantilever beam having rectangular step length 190 μm and beam free end width 40 μm are found as 680% and 800%, respectively, higher than that of the rectangular beam of length 200 μm and thickness 40 μm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Arntz Y, Seelig JD, Lang HP, Zhang J, Hunziker P, Ramseyer JP, Meyer E, Hegner M, Gerber C (2003) Label-free protein assay based on a nanomechanical cantilever array. Nanotechnology 14(1):86–90CrossRef Arntz Y, Seelig JD, Lang HP, Zhang J, Hunziker P, Ramseyer JP, Meyer E, Hegner M, Gerber C (2003) Label-free protein assay based on a nanomechanical cantilever array. Nanotechnology 14(1):86–90CrossRef
Zurück zum Zitat Ashok A, Aparna G, Pal P, Pandey AK (2018a) An analysis of stepped trapezoidal-shaped microcantilever beams for MEMS-based devices. J Micromech Microeng 28:075009 (11 pp)CrossRef Ashok A, Aparna G, Pal P, Pandey AK (2018a) An analysis of stepped trapezoidal-shaped microcantilever beams for MEMS-based devices. J Micromech Microeng 28:075009 (11 pp)CrossRef
Zurück zum Zitat Ashok A, Manoj Kumar P, Singh SS, Raju P, Pal P, Pandey AK (2018b) Achieving wideband micromechanical system using coupled non-uniform beams array. Sens Actuators A Phys 273:12–18CrossRef Ashok A, Manoj Kumar P, Singh SS, Raju P, Pal P, Pandey AK (2018b) Achieving wideband micromechanical system using coupled non-uniform beams array. Sens Actuators A Phys 273:12–18CrossRef
Zurück zum Zitat Ashok A, Sahu NK, Pal P, Pandey AK (2018c) Arrow shaped microcantilever beams for enhancing mass sensitivity. In: 2018 IEEE sensors, New Delhi, India, 28–31 Oct 2018, pp 1–4 Ashok A, Sahu NK, Pal P, Pandey AK (2018c) Arrow shaped microcantilever beams for enhancing mass sensitivity. In: 2018 IEEE sensors, New Delhi, India, 28–31 Oct 2018, pp 1–4
Zurück zum Zitat Cowburn RP, Moulin AM, Welland WE (1997) High-sensitivity measurement of magnetic fields using microcantilevers. Appl Phys Lett 71(15):2202–2204CrossRef Cowburn RP, Moulin AM, Welland WE (1997) High-sensitivity measurement of magnetic fields using microcantilevers. Appl Phys Lett 71(15):2202–2204CrossRef
Zurück zum Zitat Cox R, Zhang J, Josse F, Heinrich S, Dufour I, Beardslee LA, Brand O (2011) Damping and mass sensitivity of laterally vibrating resonant microcantilevers in viscous liquid media. In: Proceedings of the 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS), San Francisco, CA, USA, 2–5 May 2011, pp 1–6 Cox R, Zhang J, Josse F, Heinrich S, Dufour I, Beardslee LA, Brand O (2011) Damping and mass sensitivity of laterally vibrating resonant microcantilevers in viscous liquid media. In: Proceedings of the 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS), San Francisco, CA, USA, 2–5 May 2011, pp 1–6
Zurück zum Zitat Datskos PG, Oden PI, Thundat T, Wachter EA, Warmack RJ, Hunter RS (1996) Remote infrared radiation detection using piezoresistive microcantilevers. Appl Phys Lett 69(20):2986–2988CrossRef Datskos PG, Oden PI, Thundat T, Wachter EA, Warmack RJ, Hunter RS (1996) Remote infrared radiation detection using piezoresistive microcantilevers. Appl Phys Lett 69(20):2986–2988CrossRef
Zurück zum Zitat Decuzz P, Granaldi A, Pascazio G (2007) Dynamic response of microcantilever-based sensors in a fluidic chamber. J Appl Phys 101(2):024303 (6 pp) Decuzz P, Granaldi A, Pascazio G (2007) Dynamic response of microcantilever-based sensors in a fluidic chamber. J Appl Phys 101(2):024303 (6 pp)
Zurück zum Zitat Dong Y, Gao W, Zhou Q, Zheng Y, You Z (2010) Characterization of the gas sensors based on Polymer coated resonant microcantilevers for the detection of volatile organic compounds. Anal Chim Acta 671:85–91CrossRef Dong Y, Gao W, Zhou Q, Zheng Y, You Z (2010) Characterization of the gas sensors based on Polymer coated resonant microcantilevers for the detection of volatile organic compounds. Anal Chim Acta 671:85–91CrossRef
Zurück zum Zitat Finot E, Lesniewska E, Goudonnet JP, Thundat T (2001) Measuring magnetic susceptibilities of nanogram quantities of materials using microcantilevers. Ultramicroscopy 86(1–2):175–180CrossRef Finot E, Lesniewska E, Goudonnet JP, Thundat T (2001) Measuring magnetic susceptibilities of nanogram quantities of materials using microcantilevers. Ultramicroscopy 86(1–2):175–180CrossRef
Zurück zum Zitat Hawari HF, Wahab Y, Azmi MT, Shakaff Md AY, Hashim U, Johari S (2014) Design and analysis of various microcantilever shapes for MEMS based sensing. J Phys Conf Ser 495:012045 (9 pp) Hawari HF, Wahab Y, Azmi MT, Shakaff Md AY, Hashim U, Johari S (2014) Design and analysis of various microcantilever shapes for MEMS based sensing. J Phys Conf Ser 495:012045 (9 pp)
Zurück zum Zitat Jin D, Li X, Liu J, Zuo G, Wang Y, Liu M, Yu H (2006) High-mode resonant piezoresistive cantilever sensors for tens-femtogram resoluble mass sensing in air. J Micromech Microeng 16(5):1017–1023CrossRef Jin D, Li X, Liu J, Zuo G, Wang Y, Liu M, Yu H (2006) High-mode resonant piezoresistive cantilever sensors for tens-femtogram resoluble mass sensing in air. J Micromech Microeng 16(5):1017–1023CrossRef
Zurück zum Zitat Kooser A, Gunter RL, Delinger WD, Porter TL, Eastman MP (2004) Gas sensing using embedded piezoresistive microcantilever sensors. Sens Actuators B Chem 99:474–479CrossRef Kooser A, Gunter RL, Delinger WD, Porter TL, Eastman MP (2004) Gas sensing using embedded piezoresistive microcantilever sensors. Sens Actuators B Chem 99:474–479CrossRef
Zurück zum Zitat Lavrik NV, Sepaniak MJ, Datskos PG (2004) Cantilever transducers as a platform for chemical and biological sensors. Rev Sci Instrum 75:2229–2253CrossRef Lavrik NV, Sepaniak MJ, Datskos PG (2004) Cantilever transducers as a platform for chemical and biological sensors. Rev Sci Instrum 75:2229–2253CrossRef
Zurück zum Zitat Lim YC, Kouzani AZ, Duan W, Kaynak A (2010) Effects of design parameters on sensitivity of microcantilever biosensors. In: IEEE/ICME international conference on complex medical engineering, Gold Coast, QLD, Australia, 13–15 July 2010, pp 177–181 Lim YC, Kouzani AZ, Duan W, Kaynak A (2010) Effects of design parameters on sensitivity of microcantilever biosensors. In: IEEE/ICME international conference on complex medical engineering, Gold Coast, QLD, Australia, 13–15 July 2010, pp 177–181
Zurück zum Zitat Liu Y, Wang H, Qin H, Zhao W, Wang P (2017) Geometry and profile modification of microcantilevers for sensitivity enhancement in sensing applications. Sens Mater 29(6):689–698 Liu Y, Wang H, Qin H, Zhao W, Wang P (2017) Geometry and profile modification of microcantilevers for sensitivity enhancement in sensing applications. Sens Mater 29(6):689–698
Zurück zum Zitat Nordstrom M, Keller S, Lillemose M, Johansson A, Dohn S, Haefliger D, Blagoi G, Havsteen-Jakobsen M, Boisen A (2008) SU-8 cantilevers for bio/chemical sensing; fabrication, characterisation and development of novel read-out methods. Sensors 8(3):1595–1612CrossRef Nordstrom M, Keller S, Lillemose M, Johansson A, Dohn S, Haefliger D, Blagoi G, Havsteen-Jakobsen M, Boisen A (2008) SU-8 cantilevers for bio/chemical sensing; fabrication, characterisation and development of novel read-out methods. Sensors 8(3):1595–1612CrossRef
Zurück zum Zitat Nugaeva N, Gfeller KY, Backman N, Lang HP, Duggelin M, Hegner M (2005) Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens Bioelectron 21(6):849–856CrossRef Nugaeva N, Gfeller KY, Backman N, Lang HP, Duggelin M, Hegner M (2005) Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens Bioelectron 21(6):849–856CrossRef
Zurück zum Zitat Pandey AK, Pratap R (2007) Effect of flexural modes on squeeze film damping in MEMS cantilever resonators. J Micromech Microeng 17(12):2475–2484CrossRef Pandey AK, Pratap R (2007) Effect of flexural modes on squeeze film damping in MEMS cantilever resonators. J Micromech Microeng 17(12):2475–2484CrossRef
Zurück zum Zitat Pandey AK, Pratap R, Chau FS (2007) Influence of boundary conditions on the dynamic characteristics of squeeze films in MEMS device. J Microelectromech Syst 16(4):893–903CrossRef Pandey AK, Pratap R, Chau FS (2007) Influence of boundary conditions on the dynamic characteristics of squeeze films in MEMS device. J Microelectromech Syst 16(4):893–903CrossRef
Zurück zum Zitat Parsediya DK, Singh J, Kankar PK (2014) Simulation and analysis of highly sensitive MEMS cantilever designs for in vivo label free biosensing. Procedia Technol 14:85–92CrossRef Parsediya DK, Singh J, Kankar PK (2014) Simulation and analysis of highly sensitive MEMS cantilever designs for in vivo label free biosensing. Procedia Technol 14:85–92CrossRef
Zurück zum Zitat Parsediya DK, Singh J, Kankar PK (2015) Variable width based stepped MEMS cantilevers for micro or pico level biosensing and effective switching. J Mech Sci Technol 29(11):4823–4832CrossRef Parsediya DK, Singh J, Kankar PK (2015) Variable width based stepped MEMS cantilevers for micro or pico level biosensing and effective switching. J Mech Sci Technol 29(11):4823–4832CrossRef
Zurück zum Zitat Purohit B, Jain PC, Pandey AK (2016) Modal analysis of monolithic and jointed type cantilever beams with non-uniform section. Exp Mech 56(6):1083–1094CrossRef Purohit B, Jain PC, Pandey AK (2016) Modal analysis of monolithic and jointed type cantilever beams with non-uniform section. Exp Mech 56(6):1083–1094CrossRef
Zurück zum Zitat Shih WY, Li XP, Gu HM, Shih WH, Aksay IA (2001) Simultaneous liquid viscosity and density determination with piezoelectric unimorph cantilevers. J Appl Phys 89:1497–1505CrossRef Shih WY, Li XP, Gu HM, Shih WH, Aksay IA (2001) Simultaneous liquid viscosity and density determination with piezoelectric unimorph cantilevers. J Appl Phys 89:1497–1505CrossRef
Zurück zum Zitat Singh SS, Pal P, Pandey AK (2016) Mass sensitivity of non-uniform microcantilever beams. J Vib Acoust 138(6):064502 (7 pp) Singh SS, Pal P, Pandey AK (2016) Mass sensitivity of non-uniform microcantilever beams. J Vib Acoust 138(6):064502 (7 pp)
Zurück zum Zitat Spletzer M, Raman A, Sumali H, Sullivan JP (2008) Highly sensitive mass detection and identification using vibration localization in coupled microcantilever arrays. Appl Phys Lett 92(11):114102 (3 pp)CrossRef Spletzer M, Raman A, Sumali H, Sullivan JP (2008) Highly sensitive mass detection and identification using vibration localization in coupled microcantilever arrays. Appl Phys Lett 92(11):114102 (3 pp)CrossRef
Zurück zum Zitat Subramanian S, Gupta N (2009) Improved V-shaped microcantilever width profile for sensing applications. J Phys D Appl Phys 42(18):185501 (6 pp)CrossRef Subramanian S, Gupta N (2009) Improved V-shaped microcantilever width profile for sensing applications. J Phys D Appl Phys 42(18):185501 (6 pp)CrossRef
Zurück zum Zitat Suri CR, Kaur J, Gandhi S, Shekhawat GS (2008) Label-free ultra-sensitive detection of atrazine based on nanomechanics. Nanotechnology 19(23):235502–235600CrossRef Suri CR, Kaur J, Gandhi S, Shekhawat GS (2008) Label-free ultra-sensitive detection of atrazine based on nanomechanics. Nanotechnology 19(23):235502–235600CrossRef
Zurück zum Zitat Vidic A, Then D, Ziegler Ch (2003) A new cantilever system for gas and liquid sensing. Ultramicroscopy 97:407–416CrossRef Vidic A, Then D, Ziegler Ch (2003) A new cantilever system for gas and liquid sensing. Ultramicroscopy 97:407–416CrossRef
Zurück zum Zitat Wachter EA, Thundat T, Oden PI (1996) Remote optical detection using micro-cantilevers. Rev Sci Instrum 67(10):3434–3439CrossRef Wachter EA, Thundat T, Oden PI (1996) Remote optical detection using micro-cantilevers. Rev Sci Instrum 67(10):3434–3439CrossRef
Zurück zum Zitat Wang DF, Li X, Yang X, Ikehara T, Maeda R (2015) Enhancing amplitude changes by mode localization in trio cantilevers with mass perturbation. J Micromech Microeng 25(9):095017 (8 pp)CrossRef Wang DF, Li X, Yang X, Ikehara T, Maeda R (2015) Enhancing amplitude changes by mode localization in trio cantilevers with mass perturbation. J Micromech Microeng 25(9):095017 (8 pp)CrossRef
Zurück zum Zitat Xia X, Li X (2008) Resonance-mode effect on microcantilever mass-sensing performance in air. Rev Sci Instrum 79(7):074301 (8 pp)CrossRef Xia X, Li X (2008) Resonance-mode effect on microcantilever mass-sensing performance in air. Rev Sci Instrum 79(7):074301 (8 pp)CrossRef
Zurück zum Zitat Yue M, Lin H, Dedrick DE, Satyanaayana S, Majumda A, Bedekar AS, Jenkins JW, Sundaram S (2004) A 2-D microcantilever array for multiplexed biomolecular analysis. J Microelectromech Syst 13(2):290–299CrossRef Yue M, Lin H, Dedrick DE, Satyanaayana S, Majumda A, Bedekar AS, Jenkins JW, Sundaram S (2004) A 2-D microcantilever array for multiplexed biomolecular analysis. J Microelectromech Syst 13(2):290–299CrossRef
Zurück zum Zitat Zahid Ansari M, Cho C (2008) A study on increasing sensitivity of rectangular microcantilevers used in biosensors. Sensors 8(11):7530–7544CrossRef Zahid Ansari M, Cho C (2008) A study on increasing sensitivity of rectangular microcantilevers used in biosensors. Sensors 8(11):7530–7544CrossRef
Zurück zum Zitat Zahid Ansari M, Cho C (2009) Deflection, frequency and stress characteristics of rectangular, triangular and step profile microcantilevers for biosensors. Sensors 9(8):6046–6057CrossRef Zahid Ansari M, Cho C (2009) Deflection, frequency and stress characteristics of rectangular, triangular and step profile microcantilevers for biosensors. Sensors 9(8):6046–6057CrossRef
Zurück zum Zitat Zahid Ansari M, Cho C, Kim J, Bang B (2009) Comparison between deflection and vibration characteristics of rectangular and trapezoidal profile microcantilevers. Sensors 9:2706–2718CrossRef Zahid Ansari M, Cho C, Kim J, Bang B (2009) Comparison between deflection and vibration characteristics of rectangular and trapezoidal profile microcantilevers. Sensors 9:2706–2718CrossRef
Metadaten
Titel
Design and analysis of microcantilever beams based on arrow shape
verfasst von
Akarapu Ashok
Rohit Prakash Nighot
Nagesh Kumar Sahu
Prem Pal
Ashok Kumar Pandey
Publikationsdatum
24.07.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 11/2019
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-019-04555-4

Weitere Artikel der Ausgabe 11/2019

Microsystem Technologies 11/2019 Zur Ausgabe