Skip to main content
Erschienen in: Microsystem Technologies 7/2023

17.06.2023 | Technical Paper

Design and development of a compliant piezoelectric microgripper based on three-stage amplification

verfasst von: Lei Ni, Guoqiang Chen, Kunpeng Hong, Geng Wang

Erschienen in: Microsystem Technologies | Ausgabe 7/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work presented the design and test of a double-arm actuated compliant piezoelectric microgripper based on three-stage amplification mechanism, which can also perceive the gripping displacement and force simultaneously. Developing a proper structure for the microgripper to achieve large amplification ratio in a compact space and to ensure sufficient natural frequency is a fundamental and challenging task. Firstly, the structure of piezoelectric microgripper was designed and the kinematic principle of the amplification mechanism was analyzed. Meanwhile, theoretical and simulation analysis of the statics and dynamics were carried out. Then, the calibration methods for both force and displacement sensors are presented. The calibration coefficients are 0.163 \(\text {mN/mV}\) and 0.040 \(\mu \!\!\text { m/mV}\), respectively. Finally, a series of experiments were performed to verify the performance of the designed microgripper. The test results show that the displacement amplification ratio of the microgripper is 16.8, and the maximum output displacement of 102.30 \(\mu \!\!\text { m}\) and the maximum gripping force of 227.70 \(\text {mN}\) can be reached when applying a sinusoidal input voltage with the frequency of 0.10 Hz and the amplitude of 100 \(\text {V}\). The closed-loop experiment shows that the peak-to-valley errors of both gripping displacement and force are less than 0.49 \(\mu \!\!\text { m}\) and 3.74 \(\text {mN}\) respectively. The obtained natural frequency of 215.1 Hz. The micro-gripper achieves excellent static and dynamic performance in clamping accuracy, natural frequency, clamping range, and dual finger independence.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aabid A, Parveez B, Raheman MA, Ibrahim YE, Anjum A, Hrairi M, Parveen N, Zayan JM (2021) A review of piezoelectric material-based structural control and health monitoring techniques for engineering structures: challenges and opportunities. Actuators 10(5) Aabid A, Parveez B, Raheman MA, Ibrahim YE, Anjum A, Hrairi M, Parveen N, Zayan JM (2021) A review of piezoelectric material-based structural control and health monitoring techniques for engineering structures: challenges and opportunities. Actuators 10(5)
Zurück zum Zitat Awtar Shorya (2013) Analysis of flexure mechanisms in the intermediate displacement range, chapter 3, pages 27–43. Wiley Awtar Shorya (2013) Analysis of flexure mechanisms in the intermediate displacement range, chapter 3, pages 27–43. Wiley
Zurück zum Zitat Chang P-L, Chi I-T, Tran Ngoc DK, Wang D-A (2020) Design and modeling of a compliant gripper with parallel movement of jaws. Mech Mach Theory 152:103942CrossRef Chang P-L, Chi I-T, Tran Ngoc DK, Wang D-A (2020) Design and modeling of a compliant gripper with parallel movement of jaws. Mech Mach Theory 152:103942CrossRef
Zurück zum Zitat Chen T, Sun L, Chen L, Rong W, Li X (2010) A hybrid-type electrostatically driven microgripper with an integrated vacuum tool. Sens Actu A: Phys 158(2):320–327CrossRef Chen T, Sun L, Chen L, Rong W, Li X (2010) A hybrid-type electrostatically driven microgripper with an integrated vacuum tool. Sens Actu A: Phys 158(2):320–327CrossRef
Zurück zum Zitat Chen W, Zhang X, Li H, Wei J, Fatikow S (2017) Nonlinear analysis and optimal design of a novel piezoelectric-driven compliant microgripper. Mech Mach Theory 118:32–52CrossRef Chen W, Zhang X, Li H, Wei J, Fatikow S (2017) Nonlinear analysis and optimal design of a novel piezoelectric-driven compliant microgripper. Mech Mach Theory 118:32–52CrossRef
Zurück zum Zitat Chen X, Deng Z, Siya H, Gao J, Gao X (2019) Design of a flexible piezoelectric microgripper based on combined amplification principles. Nanotechnol Precis Eng 2(3):138–143CrossRef Chen X, Deng Z, Siya H, Gao J, Gao X (2019) Design of a flexible piezoelectric microgripper based on combined amplification principles. Nanotechnol Precis Eng 2(3):138–143CrossRef
Zurück zum Zitat Ding B, Yang Z-X, Xiao X, Zhang G (2019) Design of reconfigurable planar micro-positioning stages based on function modules. IEEE Access 7:15102–15112CrossRef Ding B, Yang Z-X, Xiao X, Zhang G (2019) Design of reconfigurable planar micro-positioning stages based on function modules. IEEE Access 7:15102–15112CrossRef
Zurück zum Zitat Fard-Vatan HM, Hamedi M (2020) Design, analysis and fabrication of a novel hybrid electrothermal microgripper in microassembly cell. Microelectron Eng 231:111374CrossRef Fard-Vatan HM, Hamedi M (2020) Design, analysis and fabrication of a novel hybrid electrothermal microgripper in microassembly cell. Microelectron Eng 231:111374CrossRef
Zurück zum Zitat Han L, Fang Y, Ren X, Zhang X (2015) Improved direct inverse tracking control of a piezoelectric tube scanner for high-speed afm imaging. Mechatronics 31:10 Han L, Fang Y, Ren X, Zhang X (2015) Improved direct inverse tracking control of a piezoelectric tube scanner for high-speed afm imaging. Mechatronics 31:10
Zurück zum Zitat Jalili B, Aghaee N, Jalili P, Ganji DD (2022) Novel usage of the curved rectangular fin on the heat transfer of a double-pipe heat exchanger with a nanofluid. Case Stud Therm Eng 35:102086CrossRef Jalili B, Aghaee N, Jalili P, Ganji DD (2022) Novel usage of the curved rectangular fin on the heat transfer of a double-pipe heat exchanger with a nanofluid. Case Stud Therm Eng 35:102086CrossRef
Zurück zum Zitat Jalili B, Sadighi S, Jalili P, Ganji DD (2022) Numerical analysis of mhd nanofluid flow and heat transfer in a circular porous medium containing a cassini oval under the influence of the lorentz and buoyancy forces. Heat Transf 51(7):6122–6138CrossRef Jalili B, Sadighi S, Jalili P, Ganji DD (2022) Numerical analysis of mhd nanofluid flow and heat transfer in a circular porous medium containing a cassini oval under the influence of the lorentz and buoyancy forces. Heat Transf 51(7):6122–6138CrossRef
Zurück zum Zitat Jalili P, Kazerani K, Jalili B, Ganji DD (2022) Investigation of thermal analysis and pressure drop in non-continuous helical baffle with different helix angles and hybrid nano-particles. Case Stud Therm Eng 36:102209CrossRef Jalili P, Kazerani K, Jalili B, Ganji DD (2022) Investigation of thermal analysis and pressure drop in non-continuous helical baffle with different helix angles and hybrid nano-particles. Case Stud Therm Eng 36:102209CrossRef
Zurück zum Zitat Koo B-W, Hong S-P, Kim S-I, Kang CS, Han S-S, Oh Kyu H, Kim Young-Woon (2015) Design and application of a novel in situ nano-manipulation stage for transmission electron microscopy. Microsc Microanal 21(2):298–306CrossRef Koo B-W, Hong S-P, Kim S-I, Kang CS, Han S-S, Oh Kyu H, Kim Young-Woon (2015) Design and application of a novel in situ nano-manipulation stage for transmission electron microscopy. Microsc Microanal 21(2):298–306CrossRef
Zurück zum Zitat Liang C, Wang F, Tian Y, Zhao X, Zhang D (2017) Development of a high speed and precision wire clamp with both position and force regulations. Robot Comput Integr Manuf 44:208–217CrossRef Liang C, Wang F, Tian Y, Zhao X, Zhang D (2017) Development of a high speed and precision wire clamp with both position and force regulations. Robot Comput Integr Manuf 44:208–217CrossRef
Zurück zum Zitat Liang C, Wang F, Shi B, Huo Z, Zhou K, Tian Y, Zhang D (2018) Design and control of a novel asymmetrical piezoelectric actuated microgripper for micromanipulation. Sens Actu A Phys 269:227–237CrossRef Liang C, Wang F, Shi B, Huo Z, Zhou K, Tian Y, Zhang D (2018) Design and control of a novel asymmetrical piezoelectric actuated microgripper for micromanipulation. Sens Actu A Phys 269:227–237CrossRef
Zurück zum Zitat Lyu Z, Qingsong X (2021) Recent design and development of piezoelectric-actuated compliant microgrippers: a review. Sens Actu A Phys 331:113002CrossRef Lyu Z, Qingsong X (2021) Recent design and development of piezoelectric-actuated compliant microgrippers: a review. Sens Actu A Phys 331:113002CrossRef
Zurück zum Zitat Nah SK, Zhong ZW (2007) A microgripper using piezoelectric actuation for micro-object manipulation. Sens Actu A Phys 133(1):218–224CrossRef Nah SK, Zhong ZW (2007) A microgripper using piezoelectric actuation for micro-object manipulation. Sens Actu A Phys 133(1):218–224CrossRef
Zurück zum Zitat Oden JT, Ripperger EA, Saunders H (1982) Mechanics of Elastic Structures (2nd Edition). J Mech Design 104(4):681–682 Oden JT, Ripperger EA, Saunders H (1982) Mechanics of Elastic Structures (2nd Edition). J Mech Design 104(4):681–682
Zurück zum Zitat Paros JM, Weisbord L (1965) How to design flexure hinges. Mach Des Paros JM, Weisbord L (1965) How to design flexure hinges. Mach Des
Zurück zum Zitat Ren B, Dai J, Zhong Q (2020) Ude-based robust output feedback control with applications to a piezoelectric stage. IEEE Trans Ind Electron 67(9):7819–7828CrossRef Ren B, Dai J, Zhong Q (2020) Ude-based robust output feedback control with applications to a piezoelectric stage. IEEE Trans Ind Electron 67(9):7819–7828CrossRef
Zurück zum Zitat Wang G, Rao C (2015) Adaptive control of piezoelectric fast steering mirror for high precision tracking application. Smart Mater Struct 24(3):035019CrossRef Wang G, Rao C (2015) Adaptive control of piezoelectric fast steering mirror for high precision tracking application. Smart Mater Struct 24(3):035019CrossRef
Zurück zum Zitat Wang DH, Yang Q, Dong HM (2013) A monolithic compliant piezoelectric-driven microgripper: design, modeling, and testing. IEEE/ASME Trans Mech 18(1):138–147CrossRef Wang DH, Yang Q, Dong HM (2013) A monolithic compliant piezoelectric-driven microgripper: design, modeling, and testing. IEEE/ASME Trans Mech 18(1):138–147CrossRef
Zurück zum Zitat Wang G, Chen G, Bai F (2015) Modeling and identification of asymmetric bouc-wen hysteresis for piezoelectric actuator via a novel differential evolution algorithm. Sens Actu A Phys 235:105–118CrossRef Wang G, Chen G, Bai F (2015) Modeling and identification of asymmetric bouc-wen hysteresis for piezoelectric actuator via a novel differential evolution algorithm. Sens Actu A Phys 235:105–118CrossRef
Zurück zum Zitat Wang K, Wang D-H, Zhao J-Y, Hou S (2021) A novel piezoelectric-actuated microgripper simultaneously integrated microassembly force, gripping force and jaw-displacement sensors: design, simulation and experimental investigation. Smart Mater Struct 31(1):015046CrossRef Wang K, Wang D-H, Zhao J-Y, Hou S (2021) A novel piezoelectric-actuated microgripper simultaneously integrated microassembly force, gripping force and jaw-displacement sensors: design, simulation and experimental investigation. Smart Mater Struct 31(1):015046CrossRef
Zurück zum Zitat Wang F, Shi B, Huo Z, Tian Y, Zhang D (2021) Control and dynamic releasing method of a piezoelectric actuated microgripper. Precis Eng 68:1–9CrossRef Wang F, Shi B, Huo Z, Tian Y, Zhang D (2021) Control and dynamic releasing method of a piezoelectric actuated microgripper. Precis Eng 68:1–9CrossRef
Zurück zum Zitat Wang W, Jiang Y, Thomas PJ (2021) Structural design and physical mechanism of axial and radial sandwich resonators with piezoelectric ceramics: a review. Sensors 21(4) Wang W, Jiang Y, Thomas PJ (2021) Structural design and physical mechanism of axial and radial sandwich resonators with piezoelectric ceramics: a review. Sensors 21(4)
Zurück zum Zitat Yang YF, Lei TG, Junqiang L, Yanding W (2015) A bridge-type piezoelectric microgripper with integrated position/force sensors. Robot 37(6):655–662 Yang YF, Lei TG, Junqiang L, Yanding W (2015) A bridge-type piezoelectric microgripper with integrated position/force sensors. Robot 37(6):655–662
Zurück zum Zitat Yong YK, Tien-Fu L, Handley DC (2008) Review of circular flexure hinge design equations and derivation of empirical formulations. Precis Eng 32(2):63–70CrossRef Yong YK, Tien-Fu L, Handley DC (2008) Review of circular flexure hinge design equations and derivation of empirical formulations. Precis Eng 32(2):63–70CrossRef
Zurück zum Zitat Yuguo LJC, Yaoxiang Z (2015) Detection of finger displcement and gripping force of piezoelectric micro-gripper. Opt Precis Eng 23:1372–1379CrossRef Yuguo LJC, Yaoxiang Z (2015) Detection of finger displcement and gripping force of piezoelectric micro-gripper. Opt Precis Eng 23:1372–1379CrossRef
Zurück zum Zitat Zhang Z, Hu H (2009) Comparison of single-notch circular flexure hinge rotational stiffness equations with fea results and derivation of empirical formulations. In: 2009 International Joint Conference on Computational Sciences and Optimization, volume 1, pages 286–288 Zhang Z, Hu H (2009) Comparison of single-notch circular flexure hinge rotational stiffness equations with fea results and derivation of empirical formulations. In: 2009 International Joint Conference on Computational Sciences and Optimization, volume 1, pages 286–288
Zurück zum Zitat Zhang J, Yang Y, Lou J, Wei Y, Fu L (2018) Development and hybrid position/force control of a dual-drive macro-fiber-composite microgripper. Sensors 18(4) Zhang J, Yang Y, Lou J, Wei Y, Fu L (2018) Development and hybrid position/force control of a dual-drive macro-fiber-composite microgripper. Sensors 18(4)
Zurück zum Zitat Zheng L, Weijie D (2022) Position and force self-sensing piezoelectric valve with hysteresis compensation. J Intell Mater Syst Struct 33(1):170–182CrossRef Zheng L, Weijie D (2022) Position and force self-sensing piezoelectric valve with hysteresis compensation. J Intell Mater Syst Struct 33(1):170–182CrossRef
Zurück zum Zitat Zubir MNM, Shirinzadeh B, Tian Y (2009) A new design of piezoelectric driven compliant-based microgripper for micromanipulation. Mech Mach Theory 44(12):2248–2264CrossRefMATH Zubir MNM, Shirinzadeh B, Tian Y (2009) A new design of piezoelectric driven compliant-based microgripper for micromanipulation. Mech Mach Theory 44(12):2248–2264CrossRefMATH
Metadaten
Titel
Design and development of a compliant piezoelectric microgripper based on three-stage amplification
verfasst von
Lei Ni
Guoqiang Chen
Kunpeng Hong
Geng Wang
Publikationsdatum
17.06.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 7/2023
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-023-05488-9

Weitere Artikel der Ausgabe 7/2023

Microsystem Technologies 7/2023 Zur Ausgabe

Neuer Inhalt