Skip to main content
Erschienen in: International Journal on Interactive Design and Manufacturing (IJIDeM) 5/2023

08.10.2022 | Original Paper

Design and modeling of abrasive flow finishing of freeform surfaces of FDM printed femoral component of knee implant pattern

verfasst von: Abdul Wahab Hashmi, Harlal Singh Mali, Anoj Meena, Kuldeep K. Saxena, Ana Pilar Valerga Puerta, U. Sathish Rao, Dharam Buddhi, Kahtan A. Mohammed

Erschienen in: International Journal on Interactive Design and Manufacturing (IJIDeM) | Ausgabe 5/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The design and manufacture of medical implants is a dynamic and important area of research, both from a medical and an engineering standpoint. For use in the actual fabrication of the end-use implant utilizing the investment casting method, a replica of a knee implant can be produced using the fused deposition modeling (FDM) technique. Whereas there are numerous benefits of the FDM process, the outer surface of the FDM printed parts are subjected to poor surface finishing due to the successive addition of material layers. So FDM printed details need to be post-processed using suitable surface finishing techniques, i.e., abrasive flow machining (AFM) process. This paper describes an experimental investigation on AFM of freeform surfaces of FDM printed femoral component of knee implant replica for investment casting application. The AFM media is made with a base material of corn-starch powder, a carrier medium of EDM oil, and additives of aloe barbadensis miller (aloe vera gel) and glycerin. The rheology of this newly developed AFM media has been measured and optimized for maximum material removal rate. AFM media is also characterized to check its thermal stability and functional elements using thermogravimetric analysis (TGA) and Fourier Transform Infrared (FTIR) spectroscopic method. Finally, the FDM printed pattern of the femoral component of the knee implant is finished using a one-way AFM machine using the newly prepared optimized AFM media. For an FDM printed pattern of a femoral component of a knee implant, the maximum percentage improvement in average surface roughness (Ra) that a medium based on corn-starch (50% corn-starch powder) can achieve is 83%, and the initial surface roughness was reduced by 81.58%, from 9.30 to 02.10 μm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Muthaiah, V.M.S., Indrakumar, S., Suwas, S., Chatterjee, K.: Surface engineering of additively manufactured titanium alloys for enhanced clinical performance of biomedical implants: a review of recent developments. Bioprinting 25, e00180 (2022)CrossRef Muthaiah, V.M.S., Indrakumar, S., Suwas, S., Chatterjee, K.: Surface engineering of additively manufactured titanium alloys for enhanced clinical performance of biomedical implants: a review of recent developments. Bioprinting 25, e00180 (2022)CrossRef
2.
Zurück zum Zitat Radwan-Pragłowska, J., Janus, Ł, Szajna, E., Galek, T., Sierakowska, A., Piątkowski, M., Tupaj, M., Radomski, P., Michalec, M., Bogdał, D.: Biodegradable Mg-based implants obtained via anodic oxidation applicable in dentistry: preparation and characterization. J. Mater. Res. Technol. 20, 1736 (2022)CrossRef Radwan-Pragłowska, J., Janus, Ł, Szajna, E., Galek, T., Sierakowska, A., Piątkowski, M., Tupaj, M., Radomski, P., Michalec, M., Bogdał, D.: Biodegradable Mg-based implants obtained via anodic oxidation applicable in dentistry: preparation and characterization. J. Mater. Res. Technol. 20, 1736 (2022)CrossRef
3.
Zurück zum Zitat Amukarimi, S., Mozafari, M.: Biodegradable magnesium biomaterials—road to the clinic. Bioengineering 9, 107 (2022)CrossRef Amukarimi, S., Mozafari, M.: Biodegradable magnesium biomaterials—road to the clinic. Bioengineering 9, 107 (2022)CrossRef
4.
Zurück zum Zitat Amirtharaj Mosas, K.K., Chandrasekar, A.R., Dasan, A., Pakseresht, A., Galusek, D.: Recent advancements in materials and coatings for biomedical implants. Gels 8, 323 (2022)CrossRef Amirtharaj Mosas, K.K., Chandrasekar, A.R., Dasan, A., Pakseresht, A., Galusek, D.: Recent advancements in materials and coatings for biomedical implants. Gels 8, 323 (2022)CrossRef
5.
Zurück zum Zitat Hussain, M., Khan, S.M., Al-Khaled, K., Ayadi, M., Abbas, N., Chammam, W.: Performance analysis of biodegradable materials for orthopedic applications. Mater. Today Commun. 31, 103167 (2022)CrossRef Hussain, M., Khan, S.M., Al-Khaled, K., Ayadi, M., Abbas, N., Chammam, W.: Performance analysis of biodegradable materials for orthopedic applications. Mater. Today Commun. 31, 103167 (2022)CrossRef
6.
Zurück zum Zitat Carr, B.C., Goswami, T.: Knee implants—review of models and biomechanics. Mater. Des. 30, 398–413 (2009)CrossRef Carr, B.C., Goswami, T.: Knee implants—review of models and biomechanics. Mater. Des. 30, 398–413 (2009)CrossRef
7.
Zurück zum Zitat Skjöldebrand, C., Tipper, J.L., Hatto, P., Bryant, M., Hall, R.M., Persson, C.: Current status and future potential of wear-resistant coatings and articulating surfaces for hip and knee implants. Mater. Today Bio. 15, 100270 (2022)CrossRef Skjöldebrand, C., Tipper, J.L., Hatto, P., Bryant, M., Hall, R.M., Persson, C.: Current status and future potential of wear-resistant coatings and articulating surfaces for hip and knee implants. Mater. Today Bio. 15, 100270 (2022)CrossRef
8.
Zurück zum Zitat Tandogan, R.N., Bekmez, S., Polat, M.: Optimal implant fixation in knee arthroplasty: cemented versus cementless knee arthroplasty. In: Basics in Primary Knee Arthroplasty, pp. 437–460. Springer, Cham (2022)CrossRef Tandogan, R.N., Bekmez, S., Polat, M.: Optimal implant fixation in knee arthroplasty: cemented versus cementless knee arthroplasty. In: Basics in Primary Knee Arthroplasty, pp. 437–460. Springer, Cham (2022)CrossRef
10.
Zurück zum Zitat Felhő, C., Kundrak, J.: Comparison of theoretical and real surface roughness in face milling with octagonal and circular inserts. In: Key Engineering Materials, pp. 360–365. Trans Tech Publ (2014) Felhő, C., Kundrak, J.: Comparison of theoretical and real surface roughness in face milling with octagonal and circular inserts. In: Key Engineering Materials, pp. 360–365. Trans Tech Publ (2014)
11.
Zurück zum Zitat Kundrák, J., Varga, G.: Possibility of reducing environmental load in hard machining. In: Key Engineering Materials, pp. 205–210. Trans Tech Publ (2012) Kundrák, J., Varga, G.: Possibility of reducing environmental load in hard machining. In: Key Engineering Materials, pp. 205–210. Trans Tech Publ (2012)
12.
Zurück zum Zitat Kundrak, J., Varga, G., Deszpoth, I., Molnar, V.: Some aspects of the hard machining of bore holes. In: Applied Mechanics and Materials, pp. 126–132. Trans Tech Publ (2013) Kundrak, J., Varga, G., Deszpoth, I., Molnar, V.: Some aspects of the hard machining of bore holes. In: Applied Mechanics and Materials, pp. 126–132. Trans Tech Publ (2013)
13.
Zurück zum Zitat Illés, B., Tamás, P., Dobos, P., Skapinyecz, R.: New challenges for quality assurance of manufacturing processes in industry 4.0. In: Solid State Phenomena, pp. 481–486. Trans Tech Publ (2017) Illés, B., Tamás, P., Dobos, P., Skapinyecz, R.: New challenges for quality assurance of manufacturing processes in industry 4.0. In: Solid State Phenomena, pp. 481–486. Trans Tech Publ (2017)
14.
Zurück zum Zitat Brand, R.A., Mont, M.A., Manring, M.M.: Biographical sketch: themistocles Gluck (1853–1942). Clin. Orthop. Relat. Res. 469, 1525–1527 (2011)CrossRef Brand, R.A., Mont, M.A., Manring, M.M.: Biographical sketch: themistocles Gluck (1853–1942). Clin. Orthop. Relat. Res. 469, 1525–1527 (2011)CrossRef
15.
Zurück zum Zitat Taylor-Williams, O., Inderjeeth, C.A., Almutairi, K.B., Keen, H., Preen, D.B., Nossent, J.C.: Total hip replacement in patients with rheumatoid arthritis: trends in incidence and complication rates over 35 years. Rheumatol. Ther. 9, 565–580 (2022)CrossRef Taylor-Williams, O., Inderjeeth, C.A., Almutairi, K.B., Keen, H., Preen, D.B., Nossent, J.C.: Total hip replacement in patients with rheumatoid arthritis: trends in incidence and complication rates over 35 years. Rheumatol. Ther. 9, 565–580 (2022)CrossRef
16.
Zurück zum Zitat Carr, A.J., Robertsson, O., Graves, S., Price, A.J., Arden, N.K., Judge, A., Beard, D.J.: Knee replacement. Lancet 379, 1331–1340 (2012)CrossRef Carr, A.J., Robertsson, O., Graves, S., Price, A.J., Arden, N.K., Judge, A., Beard, D.J.: Knee replacement. Lancet 379, 1331–1340 (2012)CrossRef
17.
Zurück zum Zitat Taylor, C.E.V., Murray, C.M., Stanton, T.R.: Patient perspectives of pain and function after knee replacement: a systematic review and meta-synthesis of qualitative studies. Pain Rep. 7, e1006 (2022)CrossRef Taylor, C.E.V., Murray, C.M., Stanton, T.R.: Patient perspectives of pain and function after knee replacement: a systematic review and meta-synthesis of qualitative studies. Pain Rep. 7, e1006 (2022)CrossRef
18.
Zurück zum Zitat Harrysson, O.L.A., Hosni, Y.A., Nayfeh, J.F.: Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study. BMC Musculoskelet. Disord. 8, 1–10 (2007)CrossRef Harrysson, O.L.A., Hosni, Y.A., Nayfeh, J.F.: Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study. BMC Musculoskelet. Disord. 8, 1–10 (2007)CrossRef
19.
Zurück zum Zitat Song, C., Yang, Y., Wang, Y., Wang, D., Yu, J.: Research on rapid manufacturing of CoCrMo alloy femoral component based on selective laser melting. Int. J. Adv. Manuf. Technol. 75, 445–453 (2014)CrossRef Song, C., Yang, Y., Wang, Y., Wang, D., Yu, J.: Research on rapid manufacturing of CoCrMo alloy femoral component based on selective laser melting. Int. J. Adv. Manuf. Technol. 75, 445–453 (2014)CrossRef
20.
Zurück zum Zitat Behera, M., Panemangalore, D.B., Shabadi, R.: Additively manufactured magnesium-based bio-implants and their challenges. Trans. Indian Natl. Acad. Eng. 6, 917–932 (2021)CrossRef Behera, M., Panemangalore, D.B., Shabadi, R.: Additively manufactured magnesium-based bio-implants and their challenges. Trans. Indian Natl. Acad. Eng. 6, 917–932 (2021)CrossRef
21.
Zurück zum Zitat Kundu, M., Kadambi, P., Dhatrak, P.: Additive manufacturing of bio-implants using functionally graded materials. In: AIP Conference Proceedings, p. 20062. AIP Publishing LLC (2022) Kundu, M., Kadambi, P., Dhatrak, P.: Additive manufacturing of bio-implants using functionally graded materials. In: AIP Conference Proceedings, p. 20062. AIP Publishing LLC (2022)
22.
Zurück zum Zitat Ho, C.M.B., Ng, S.H., Yoon, Y.-J.: A review on 3D printed bioimplants. Int. J. Precis. Eng. Manuf. 16, 1035–1046 (2015)CrossRef Ho, C.M.B., Ng, S.H., Yoon, Y.-J.: A review on 3D printed bioimplants. Int. J. Precis. Eng. Manuf. 16, 1035–1046 (2015)CrossRef
23.
Zurück zum Zitat Liu, G., He, Y., Liu, P., Chen, Z., Chen, X., Wan, L., Li, Y., Lu, J.: Development of bioimplants with 2D, 3D, and 4D additive manufacturing materials. Engineering 6, 1232–1243 (2020)CrossRef Liu, G., He, Y., Liu, P., Chen, Z., Chen, X., Wan, L., Li, Y., Lu, J.: Development of bioimplants with 2D, 3D, and 4D additive manufacturing materials. Engineering 6, 1232–1243 (2020)CrossRef
24.
Zurück zum Zitat Paul, S., Nath, A., Roy, S.S.: Additive manufacturing of multi-functional biomaterials for bioimplants: a review. In: IOP Conference Series: Materials Science and Engineering, p. 12016. IOP Publishing (2021) Paul, S., Nath, A., Roy, S.S.: Additive manufacturing of multi-functional biomaterials for bioimplants: a review. In: IOP Conference Series: Materials Science and Engineering, p. 12016. IOP Publishing (2021)
25.
Zurück zum Zitat Telang, V.S., Pemmada, R., Ramakrishna, S., Tandon, P., Nanda, H.S.: Overview of current additive manufacturing technologies for titanium bioimplants. In: Nanoscale Engineering of Biomaterials: Properties and Applications, pp. 117–130. Springer (2022)CrossRef Telang, V.S., Pemmada, R., Ramakrishna, S., Tandon, P., Nanda, H.S.: Overview of current additive manufacturing technologies for titanium bioimplants. In: Nanoscale Engineering of Biomaterials: Properties and Applications, pp. 117–130. Springer (2022)CrossRef
26.
Zurück zum Zitat Thanigaivel, S., Priya, A.K., Balakrishnan, D., Dutta, K., Rajendran, S., Soto-Moscoso, M.: Insight on recent development in metallic biomaterials: strategies involving synthesis, types and surface modification for advanced therapeutic and biomedical applications. Biochem. Eng. J. (2022). https://doi.org/10.1016/j.bej.2022.108522CrossRef Thanigaivel, S., Priya, A.K., Balakrishnan, D., Dutta, K., Rajendran, S., Soto-Moscoso, M.: Insight on recent development in metallic biomaterials: strategies involving synthesis, types and surface modification for advanced therapeutic and biomedical applications. Biochem. Eng. J. (2022). https://​doi.​org/​10.​1016/​j.​bej.​2022.​108522CrossRef
27.
Zurück zum Zitat Kulkarni, S.V., Nemade, A.C., Sonawwanay, P.D.: An overview on metallic and ceramic biomaterials. In: Recent Advances in Manufacturing Processes and Systems, pp. 149–165. Springer (2022)CrossRef Kulkarni, S.V., Nemade, A.C., Sonawwanay, P.D.: An overview on metallic and ceramic biomaterials. In: Recent Advances in Manufacturing Processes and Systems, pp. 149–165. Springer (2022)CrossRef
28.
Zurück zum Zitat Dixit, N., Sharma, V., Kumar, P.: Research trends in abrasive flow machining: a systematic review. J. Manuf. Process. 64, 1434–1461 (2021)CrossRef Dixit, N., Sharma, V., Kumar, P.: Research trends in abrasive flow machining: a systematic review. J. Manuf. Process. 64, 1434–1461 (2021)CrossRef
29.
30.
Zurück zum Zitat Barrios, P., Danjou, C., Eynard, B.: Literature review and methodological framework for integration of IoT and PLM in manufacturing industry. Comput. Ind. 140, 103688 (2022)CrossRef Barrios, P., Danjou, C., Eynard, B.: Literature review and methodological framework for integration of IoT and PLM in manufacturing industry. Comput. Ind. 140, 103688 (2022)CrossRef
33.
Zurück zum Zitat Jin, Y., Li, H., He, Y., Fu, J.: Quantitative analysis of surface profile in fused deposition modelling. Addit. Manuf. 8, 142–148 (2015) Jin, Y., Li, H., He, Y., Fu, J.: Quantitative analysis of surface profile in fused deposition modelling. Addit. Manuf. 8, 142–148 (2015)
36.
Zurück zum Zitat Ni, J., Ling, H., Zhang, S., Wang, Z., Peng, Z., Benyshek, C., Zan, R., Miri, A.K., Li, Z., Zhang, X.: Three-dimensional printing of metals for biomedical applications. Mater. Today Bio. 3, 100024 (2019)CrossRef Ni, J., Ling, H., Zhang, S., Wang, Z., Peng, Z., Benyshek, C., Zan, R., Miri, A.K., Li, Z., Zhang, X.: Three-dimensional printing of metals for biomedical applications. Mater. Today Bio. 3, 100024 (2019)CrossRef
37.
Zurück zum Zitat Dey, A., Hoffman, D., Yodo, N.: Optimizing multiple process parameters in fused deposition modeling with particle swarm optimization. Int. J. Interact. Des. Manuf. 14, 393–405 (2020)CrossRef Dey, A., Hoffman, D., Yodo, N.: Optimizing multiple process parameters in fused deposition modeling with particle swarm optimization. Int. J. Interact. Des. Manuf. 14, 393–405 (2020)CrossRef
38.
Zurück zum Zitat Yadav, A., Rohru, P., Babbar, A., Kumar, R., Ranjan, N., Chohan, J.S., Kumar, R., Gupta, M.: Fused filament fabrication: a state-of-the-art review of the technology, materials, properties and defects. Int. J. Interact. Des. Manuf. 1–23 (2022). https://doi.org/10.1007/s12008-022-01026-5 Yadav, A., Rohru, P., Babbar, A., Kumar, R., Ranjan, N., Chohan, J.S., Kumar, R., Gupta, M.: Fused filament fabrication: a state-of-the-art review of the technology, materials, properties and defects. Int. J. Interact. Des. Manuf. 1–23 (2022). https://​doi.​org/​10.​1007/​s12008-022-01026-5
39.
Zurück zum Zitat Regina, F., Lavecchia, F., Galantucci, L.M.: Preliminary study for a full colour low cost open source 3D printer, based on the combination of fused deposition modelling (FDM) or fused filament fabrication (FFF) and inkjet printing. Int. J. Interact. Des. Manuf. 12, 979–993 (2018)CrossRef Regina, F., Lavecchia, F., Galantucci, L.M.: Preliminary study for a full colour low cost open source 3D printer, based on the combination of fused deposition modelling (FDM) or fused filament fabrication (FFF) and inkjet printing. Int. J. Interact. Des. Manuf. 12, 979–993 (2018)CrossRef
41.
Zurück zum Zitat Grandvallet, C., Mbow, M.M., Mainwaring, T., Pourroy, F., Vignat, F., Marin, P.: Eight action rules for the orientation of additive manufacturing parts in powder bed fusion: an industry practice. Int. J. Interact. Des. Manuf. 14, 1159–1170 (2020)CrossRef Grandvallet, C., Mbow, M.M., Mainwaring, T., Pourroy, F., Vignat, F., Marin, P.: Eight action rules for the orientation of additive manufacturing parts in powder bed fusion: an industry practice. Int. J. Interact. Des. Manuf. 14, 1159–1170 (2020)CrossRef
45.
Zurück zum Zitat Mahmood, M.A., Chioibasu, D., Ur Rehman, A., Mihai, S., Popescu, A.C.: Post-processing techniques to enhance the quality of metallic parts produced by additive manufacturing. Metals 12, 77 (2022)CrossRef Mahmood, M.A., Chioibasu, D., Ur Rehman, A., Mihai, S., Popescu, A.C.: Post-processing techniques to enhance the quality of metallic parts produced by additive manufacturing. Metals 12, 77 (2022)CrossRef
46.
Zurück zum Zitat Pereira, S., Vaz, A.I.F., Vicente, L.N.: On the optimal object orientation in additive manufacturing. Int. J. Adv. Manuf. Technol. 98, 1685–1694 (2018)CrossRef Pereira, S., Vaz, A.I.F., Vicente, L.N.: On the optimal object orientation in additive manufacturing. Int. J. Adv. Manuf. Technol. 98, 1685–1694 (2018)CrossRef
47.
Zurück zum Zitat Moroni, G., Syam, W.P., Petro, S.: Towards early estimation of part accuracy in additive manufacturing. Procedia Cirp. 21, 300–305 (2014)CrossRef Moroni, G., Syam, W.P., Petro, S.: Towards early estimation of part accuracy in additive manufacturing. Procedia Cirp. 21, 300–305 (2014)CrossRef
48.
Zurück zum Zitat Das, P., Chandran, R., Samant, R., Anand, S.: Optimum part build orientation in additive manufacturing for minimizing part errors and support structures. Procedia Manuf. 1, 343–354 (2015)CrossRef Das, P., Chandran, R., Samant, R., Anand, S.: Optimum part build orientation in additive manufacturing for minimizing part errors and support structures. Procedia Manuf. 1, 343–354 (2015)CrossRef
49.
Zurück zum Zitat Matos, M.A., Maria, A., Pereira, A.I.: Improving additive manufacturing performance by build orientation optimization. Int. J. Adv. Manuf. Technol. 107, 1993–2005 (2020)CrossRef Matos, M.A., Maria, A., Pereira, A.I.: Improving additive manufacturing performance by build orientation optimization. Int. J. Adv. Manuf. Technol. 107, 1993–2005 (2020)CrossRef
50.
Zurück zum Zitat Ayrilmis, N.: Effect of layer thickness on surface properties of 3D printed materials produced from wood flour/PLA filament. Polym. Test. 71, 163–166 (2018)CrossRef Ayrilmis, N.: Effect of layer thickness on surface properties of 3D printed materials produced from wood flour/PLA filament. Polym. Test. 71, 163–166 (2018)CrossRef
51.
Zurück zum Zitat Taufik, M., Jain, P.K.: Thermally assisted finishing of fused deposition modelling build part using a novel CNC tool. J. Manuf. Process. 59, 266–278 (2020)CrossRef Taufik, M., Jain, P.K.: Thermally assisted finishing of fused deposition modelling build part using a novel CNC tool. J. Manuf. Process. 59, 266–278 (2020)CrossRef
54.
Zurück zum Zitat Hashmi, A.W., Mali, H.S., Meena, A.: Surface quality improvement methods of additively manufactured parts: a review. Solid State Technol. 63, 23477–23517 (2020) Hashmi, A.W., Mali, H.S., Meena, A.: Surface quality improvement methods of additively manufactured parts: a review. Solid State Technol. 63, 23477–23517 (2020)
55.
Zurück zum Zitat Hashmi, A.W., Mali, H.S., Meena, A.: The surface quality improvement methods for FDM printed parts: a review. In: Fused Deposition Modeling Based 3D Printing, pp. 167–194. Springer, Cham (2021)CrossRef Hashmi, A.W., Mali, H.S., Meena, A.: The surface quality improvement methods for FDM printed parts: a review. In: Fused Deposition Modeling Based 3D Printing, pp. 167–194. Springer, Cham (2021)CrossRef
57.
Zurück zum Zitat Rhoades, L.J.: Abrasive flow machining for automatic surface finishing and capacitance technology for in-process surface and dimensional metrology. In: Surface Engineering, pp. 456–467. Springer (1990)CrossRef Rhoades, L.J.: Abrasive flow machining for automatic surface finishing and capacitance technology for in-process surface and dimensional metrology. In: Surface Engineering, pp. 456–467. Springer (1990)CrossRef
58.
Zurück zum Zitat Kumar, S.S., Hiremath, S.S.: A review on abrasive flow machining (AFM). Procedia Technol. 25, 1297–1304 (2016)CrossRef Kumar, S.S., Hiremath, S.S.: A review on abrasive flow machining (AFM). Procedia Technol. 25, 1297–1304 (2016)CrossRef
59.
Zurück zum Zitat Sambharia, J.K., Mali, H.S., Garg, V.: Experimental investigation on unidirectional abrasive flow machining of trim die workpiece. Mater. Manuf. Process. 33, 651–660 (2018)CrossRef Sambharia, J.K., Mali, H.S., Garg, V.: Experimental investigation on unidirectional abrasive flow machining of trim die workpiece. Mater. Manuf. Process. 33, 651–660 (2018)CrossRef
60.
Zurück zum Zitat Jain, V.K., Adsul, S.G.: Experimental investigations into abrasive flow machining (AFM). Int. J. Mach. Tools Manuf. 40, 1003–1021 (2000)CrossRef Jain, V.K., Adsul, S.G.: Experimental investigations into abrasive flow machining (AFM). Int. J. Mach. Tools Manuf. 40, 1003–1021 (2000)CrossRef
61.
Zurück zum Zitat Williams, R.E., Melton, V.L.: Abrasive flow finishing of stereolithography prototypes. Rapid Prototyp. J. 4, 56 (1998)CrossRef Williams, R.E., Melton, V.L.: Abrasive flow finishing of stereolithography prototypes. Rapid Prototyp. J. 4, 56 (1998)CrossRef
66.
Zurück zum Zitat Hashmi, A.W., Mali, H.S., Meena, A.: Experimental investigation of an innovative viscometer for measuring the viscosity of Ferrofluid. Mater. Today Proc. 50, 2037–2043 (2022)CrossRef Hashmi, A.W., Mali, H.S., Meena, A.: Experimental investigation of an innovative viscometer for measuring the viscosity of Ferrofluid. Mater. Today Proc. 50, 2037–2043 (2022)CrossRef
68.
Zurück zum Zitat Hashmi, A.W., Mali, H.S., Meena, A., Khilji, I.A., Chilakamarry, C.R.: Experimental investigation on magnetorheological finishing process parameters. Mater. Today Proc. 48, 1892–1898 (2022)CrossRef Hashmi, A.W., Mali, H.S., Meena, A., Khilji, I.A., Chilakamarry, C.R.: Experimental investigation on magnetorheological finishing process parameters. Mater. Today Proc. 48, 1892–1898 (2022)CrossRef
69.
Zurück zum Zitat Hashmi, A.W., Mali, H.S., Meena, A., Saxena, K.K., Puerta, A.P.V., Prakash, C., Buddhi, D., Davim, J.P., Abdul-Zahra, D.S.: Understanding the mechanism of abrasive-based finishing processes using mathematical modeling and numerical simulation. Metals 12, 1328 (2022)CrossRef Hashmi, A.W., Mali, H.S., Meena, A., Saxena, K.K., Puerta, A.P.V., Prakash, C., Buddhi, D., Davim, J.P., Abdul-Zahra, D.S.: Understanding the mechanism of abrasive-based finishing processes using mathematical modeling and numerical simulation. Metals 12, 1328 (2022)CrossRef
71.
Zurück zum Zitat Hashmi, A.W., Mali, H.S., Meena, A., Khilji, I.A., Hashmi, M.F.: Machine vision for the measurement of machining parameters: a review. Mater. Today Proc. 56, 1939 (2021)CrossRef Hashmi, A.W., Mali, H.S., Meena, A., Khilji, I.A., Hashmi, M.F.: Machine vision for the measurement of machining parameters: a review. Mater. Today Proc. 56, 1939 (2021)CrossRef
72.
Zurück zum Zitat Hashmi, A.W., Mali, H.S., Meena, A., Khilji, I.A., Hashmi, M.F.: Artificial intelligence techniques for implementation of intelligent machining. Mater. Today Proc. 56, 1947–1955 (2022)CrossRef Hashmi, A.W., Mali, H.S., Meena, A., Khilji, I.A., Hashmi, M.F.: Artificial intelligence techniques for implementation of intelligent machining. Mater. Today Proc. 56, 1947–1955 (2022)CrossRef
74.
Zurück zum Zitat Kumar, S., Jain, V.K., Sidpara, A.: Nanofinishing of freeform surfaces (knee joint implant) by rotational-magnetorheological abrasive flow finishing (R-MRAFF) process. Precis. Eng. 42, 165–178 (2015)CrossRef Kumar, S., Jain, V.K., Sidpara, A.: Nanofinishing of freeform surfaces (knee joint implant) by rotational-magnetorheological abrasive flow finishing (R-MRAFF) process. Precis. Eng. 42, 165–178 (2015)CrossRef
75.
Zurück zum Zitat Zhang, L., Yuan, Z., Tan, D., Huang, Y.: An improved abrasive flow processing method for complex geometric surfaces of titanium alloy artificial joints. Appl. Sci. 8, 1037 (2018)CrossRef Zhang, L., Yuan, Z., Tan, D., Huang, Y.: An improved abrasive flow processing method for complex geometric surfaces of titanium alloy artificial joints. Appl. Sci. 8, 1037 (2018)CrossRef
76.
Zurück zum Zitat Markopoulos, A.P., Galanis, N.I., Karkalos, N.E., Manolakos, D.E.: Precision CNC machining of femoral component of knee implant: a case study. Machines 6, 10 (2018)CrossRef Markopoulos, A.P., Galanis, N.I., Karkalos, N.E., Manolakos, D.E.: Precision CNC machining of femoral component of knee implant: a case study. Machines 6, 10 (2018)CrossRef
77.
Zurück zum Zitat Maji, P.K., Banerjee, P.S., Sinha, A.: Application of rapid prototyping and rapid tooling for development of patient-specific craniofacial implant: an investigative study. Int. J. Adv. Manuf. Technol. 36, 510–515 (2008)CrossRef Maji, P.K., Banerjee, P.S., Sinha, A.: Application of rapid prototyping and rapid tooling for development of patient-specific craniofacial implant: an investigative study. Int. J. Adv. Manuf. Technol. 36, 510–515 (2008)CrossRef
78.
Zurück zum Zitat Singh, D., Singh, R., Boparai, K.S.: Development and surface improvement of FDM pattern based investment casting of biomedical implants: a state of art review. J. Manuf. Process. 31, 80–95 (2018)CrossRef Singh, D., Singh, R., Boparai, K.S.: Development and surface improvement of FDM pattern based investment casting of biomedical implants: a state of art review. J. Manuf. Process. 31, 80–95 (2018)CrossRef
79.
Zurück zum Zitat Denkena, B., Köhler, J., Turger, A., Helmecke, P., Correa, T., Hurschler, C.: Manufacturing conditioned wear of all-ceramic knee prostheses. Procedia CIRP 5, 179–184 (2013)CrossRef Denkena, B., Köhler, J., Turger, A., Helmecke, P., Correa, T., Hurschler, C.: Manufacturing conditioned wear of all-ceramic knee prostheses. Procedia CIRP 5, 179–184 (2013)CrossRef
80.
Zurück zum Zitat Blömer, W., Steinbrück, A., Schröder, C., Grothaus, F.-J., Melsheimer, O., Mannel, H., Forkel, G., Eilers, T., Liebs, T.R., Hassenpflug, J.: A new universal, standardized implant database for product identification: a unique tool for arthroplasty registries. Arch. Orthop. Trauma Surg. 135, 919–926 (2015)CrossRef Blömer, W., Steinbrück, A., Schröder, C., Grothaus, F.-J., Melsheimer, O., Mannel, H., Forkel, G., Eilers, T., Liebs, T.R., Hassenpflug, J.: A new universal, standardized implant database for product identification: a unique tool for arthroplasty registries. Arch. Orthop. Trauma Surg. 135, 919–926 (2015)CrossRef
81.
Zurück zum Zitat Hauer, G., Leitner, L., Ackerl, M.C., Klim, S., Vielgut, I., Ehall, R., Glehr, M., Leithner, A., Sadoghi, P.: Titanium-nitride coating does not result in a better clinical outcome compared to conventional cobalt-chromium total knee arthroplasty after a long-term follow-up: a propensity score matching analysis. Coatings 10, 442 (2020)CrossRef Hauer, G., Leitner, L., Ackerl, M.C., Klim, S., Vielgut, I., Ehall, R., Glehr, M., Leithner, A., Sadoghi, P.: Titanium-nitride coating does not result in a better clinical outcome compared to conventional cobalt-chromium total knee arthroplasty after a long-term follow-up: a propensity score matching analysis. Coatings 10, 442 (2020)CrossRef
82.
Zurück zum Zitat Bhandarkar, S., Dhatrak, P.: Optimization of a knee implant with different biomaterials using finite element analysis. Mater. Today Proc. 59, 459–467 (2022)CrossRef Bhandarkar, S., Dhatrak, P.: Optimization of a knee implant with different biomaterials using finite element analysis. Mater. Today Proc. 59, 459–467 (2022)CrossRef
83.
Zurück zum Zitat Sankar, M.R., Jain, V.K., Ramkumar, J., Joshi, Y.M.: Rheological characterization of styrene-butadiene based medium and its finishing performance using rotational abrasive flow finishing process. Int. J. Mach. Tools Manuf. 51, 947–957 (2011)CrossRef Sankar, M.R., Jain, V.K., Ramkumar, J., Joshi, Y.M.: Rheological characterization of styrene-butadiene based medium and its finishing performance using rotational abrasive flow finishing process. Int. J. Mach. Tools Manuf. 51, 947–957 (2011)CrossRef
84.
Zurück zum Zitat Gupta, G.A., Ansari, I.A., Ramkumar, J., Kar, K.K.: Rheological characterization of newly developed fly-ash mixed polymeric media and its finishing performance through abrasive flow machining. Clean. Eng. Technol. 2, 100085 (2021)CrossRef Gupta, G.A., Ansari, I.A., Ramkumar, J., Kar, K.K.: Rheological characterization of newly developed fly-ash mixed polymeric media and its finishing performance through abrasive flow machining. Clean. Eng. Technol. 2, 100085 (2021)CrossRef
Metadaten
Titel
Design and modeling of abrasive flow finishing of freeform surfaces of FDM printed femoral component of knee implant pattern
verfasst von
Abdul Wahab Hashmi
Harlal Singh Mali
Anoj Meena
Kuldeep K. Saxena
Ana Pilar Valerga Puerta
U. Sathish Rao
Dharam Buddhi
Kahtan A. Mohammed
Publikationsdatum
08.10.2022
Verlag
Springer Paris
Erschienen in
International Journal on Interactive Design and Manufacturing (IJIDeM) / Ausgabe 5/2023
Print ISSN: 1955-2513
Elektronische ISSN: 1955-2505
DOI
https://doi.org/10.1007/s12008-022-01048-z

Weitere Artikel der Ausgabe 5/2023

International Journal on Interactive Design and Manufacturing (IJIDeM) 5/2023 Zur Ausgabe

Premium Partner