Skip to main content

2024 | OriginalPaper | Buchkapitel

Design and Performance Investigation of Dual-Gate ZnO Nanostructured Thin-Film Transistor

verfasst von : Dasari Srikanya, Chitrakant Sahu

Erschienen in: Micro and Nanoelectronics Devices, Circuits and Systems

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a design and analysis of dual-gate zinc oxide nanostructured thin-film transistors (DG ZnO TFTs) are presented that outperform traditional top-gate (TG) and bottom-gate (BG) ZnO TFTs. TFTs using dual-gate (DG) technology have two conduction channels at each interface (top and bottom) to enhance gate electric fields and effective channel conduction. The capacitive coupling between the top- and bottom-gate dielectrics in the DG ZnO TFTs significantly enhances the surface potential, electric field, and mobility. The DG ZnO TFT exhibits a high drive-ON current (ION) of 11.23 mA and a steeper subthreshold swing of 64 mV/dec. The ION of the DG ZnO TFT is 58% higher than the sum of the ION of the TG and BG ZnO TFTs. We also investigated the impact of channel thickness and dielectric constant of the gate oxide on the electrical performance of the proposed device. The ION increases with the decrease of channel thickness and improves with the high dielectric constant of the oxide. When the ZnO channel thickness is 10 nm, and the dielectric is TiO2, the proposed device exhibits a higher ON current of 178.14 mA.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Tixier-Mita, S. Ihida, B.D. Ségard, G.A. Cathcart, T. Takahashi, H. Fujita, H. Toshiyoshi, Review on thin-film transistor technology, its applications, and possible new applications to biological cells. Japan. J. Appl. Phys. 55(4S), 04EA08 (2016) A. Tixier-Mita, S. Ihida, B.D. Ségard, G.A. Cathcart, T. Takahashi, H. Fujita, H. Toshiyoshi, Review on thin-film transistor technology, its applications, and possible new applications to biological cells. Japan. J. Appl. Phys. 55(4S), 04EA08 (2016)
2.
Zurück zum Zitat C.R. Kagan, P. Andry, Thin-Film Transistors, 1st edn (CRC Press, 2003) C.R. Kagan, P. Andry, Thin-Film Transistors, 1st edn (CRC Press, 2003)
3.
Zurück zum Zitat R.A. Street, Thin-film transistors. Adv. Mater. 21(20), 2007–2022 (2009)CrossRef R.A. Street, Thin-film transistors. Adv. Mater. 21(20), 2007–2022 (2009)CrossRef
4.
Zurück zum Zitat H. Klauk, Organic thin-film transistors. Chem. Soc. Rev. 39(7), 2643–2666 (2010)CrossRef H. Klauk, Organic thin-film transistors. Chem. Soc. Rev. 39(7), 2643–2666 (2010)CrossRef
5.
Zurück zum Zitat D. Zhou, M. Wang, S. Zhang, Degradation of amorphous silicon thin film transistors under negative gate bias stress. IEEE Trans. Electron Devices 58(10), 3422–3427 (2011)CrossRef D. Zhou, M. Wang, S. Zhang, Degradation of amorphous silicon thin film transistors under negative gate bias stress. IEEE Trans. Electron Devices 58(10), 3422–3427 (2011)CrossRef
6.
Zurück zum Zitat F.R. Libsch, Steady state and pulsed bias stress induced degradation in amorphous silicon thin film transistors for active-matrix liquid crystal displays, in Proceedings of International Electron Devices Meeting, pp. 681–684 (1992) F.R. Libsch, Steady state and pulsed bias stress induced degradation in amorphous silicon thin film transistors for active-matrix liquid crystal displays, in Proceedings of International Electron Devices Meeting, pp. 681–684 (1992)
7.
Zurück zum Zitat C.Y. Chen, J.W. Lee, S.D. Wang, M.S. Shieh, P.H. Lee, W.C. Chen, T.F. Lei, Negative bias temperature instability in low-temperature polycrystalline silicon thin-film transistors. IEEE Trans. Electron Devices 53(12), 2993–3000 (2006)CrossRef C.Y. Chen, J.W. Lee, S.D. Wang, M.S. Shieh, P.H. Lee, W.C. Chen, T.F. Lei, Negative bias temperature instability in low-temperature polycrystalline silicon thin-film transistors. IEEE Trans. Electron Devices 53(12), 2993–3000 (2006)CrossRef
8.
Zurück zum Zitat K. Kandpal, N. Gupta, Perspective of zinc oxide based thin film transistors: a comprehensive review. Microelectron. Int. (2018) K. Kandpal, N. Gupta, Perspective of zinc oxide based thin film transistors: a comprehensive review. Microelectron. Int. (2018)
9.
Zurück zum Zitat M. Wang, X. Li, X. Xiong, J. Song, C. Gu, D. Zhan, Q. Hu, S. Li, Y. Wu, High-performance flexible ZnO thin-film transistors by atomic layer deposition. IEEE Electron Device Lett. 40(3), 419–422 (2019)CrossRef M. Wang, X. Li, X. Xiong, J. Song, C. Gu, D. Zhan, Q. Hu, S. Li, Y. Wu, High-performance flexible ZnO thin-film transistors by atomic layer deposition. IEEE Electron Device Lett. 40(3), 419–422 (2019)CrossRef
10.
Zurück zum Zitat H. Li, D. Han, Z. Yi, J. Dong, S. Zhang, X. Zhang, Y. Wang, High-performance ZnO thin-film transistors prepared by atomic layer deposition. IEEE Trans. Electron Devices 66(7), 2965–2970 (2019)CrossRef H. Li, D. Han, Z. Yi, J. Dong, S. Zhang, X. Zhang, Y. Wang, High-performance ZnO thin-film transistors prepared by atomic layer deposition. IEEE Trans. Electron Devices 66(7), 2965–2970 (2019)CrossRef
11.
Zurück zum Zitat A.B. Djurišić, X. Chen, Y.H. Leung, A.M.C. Ng, ZnO nanostructures: growth, properties and applications. J. Mater. Chem. 22(14), 6526–6535 (2012)CrossRef A.B. Djurišić, X. Chen, Y.H. Leung, A.M.C. Ng, ZnO nanostructures: growth, properties and applications. J. Mater. Chem. 22(14), 6526–6535 (2012)CrossRef
12.
Zurück zum Zitat B.S. Ong, C. Li, Y. Li, Y. Wu, R. Loutfy, Stable, solution-processed, high-mobility ZnO thin-film transistors. J. Am. Chem. Soc. 129(10), 2750–2751 (2007)CrossRef B.S. Ong, C. Li, Y. Li, Y. Wu, R. Loutfy, Stable, solution-processed, high-mobility ZnO thin-film transistors. J. Am. Chem. Soc. 129(10), 2750–2751 (2007)CrossRef
13.
Zurück zum Zitat Ü. Özgür, D. Hofstetter, H. Morkoc, ZnO devices and applications: a review of current status and future prospects. Proc. IEEE 98(7), 1255–1268 (2010)CrossRef Ü. Özgür, D. Hofstetter, H. Morkoc, ZnO devices and applications: a review of current status and future prospects. Proc. IEEE 98(7), 1255–1268 (2010)CrossRef
14.
Zurück zum Zitat S.K. Arya, S. Saha, J.E. Ramirez-Vick, V. Gupta, S. Bhansali, S.P. Singh, Recent advances in ZnO nanostructures and thin films for biosensor applications. Anal. Chim. Acta 737, 1–21 (2012)CrossRef S.K. Arya, S. Saha, J.E. Ramirez-Vick, V. Gupta, S. Bhansali, S.P. Singh, Recent advances in ZnO nanostructures and thin films for biosensor applications. Anal. Chim. Acta 737, 1–21 (2012)CrossRef
15.
Zurück zum Zitat M.S. Oh, K. Lee, J.H. Song, B.H. Lee, M.M. Sung, D.K. Hwang, S. Im, Improving the gate stability of ZnO thin-film transistors with aluminum oxide dielectric layers. J. Electrochem. Soc. 155(12), H1009 (2008)CrossRef M.S. Oh, K. Lee, J.H. Song, B.H. Lee, M.M. Sung, D.K. Hwang, S. Im, Improving the gate stability of ZnO thin-film transistors with aluminum oxide dielectric layers. J. Electrochem. Soc. 155(12), H1009 (2008)CrossRef
16.
Zurück zum Zitat C.H. Park, K.H. Lee, M.S. Oh, K. Lee, S. Im, B.H. Lee, M.M. Sung, Dual gate ZnO-based thin-film transistors operating at 5 V: NOR gate application. IEEE Electron Device Lett. 30(1), 30–32 (2008)CrossRef C.H. Park, K.H. Lee, M.S. Oh, K. Lee, S. Im, B.H. Lee, M.M. Sung, Dual gate ZnO-based thin-film transistors operating at 5 V: NOR gate application. IEEE Electron Device Lett. 30(1), 30–32 (2008)CrossRef
17.
Zurück zum Zitat K.G. Sun, K. Choi, T.N. Jackson, Low-power double-gate ZnO TFT active rectifier. IEEE Electron Device Lett. 37(4), 426–428 (2016)CrossRef K.G. Sun, K. Choi, T.N. Jackson, Low-power double-gate ZnO TFT active rectifier. IEEE Electron Device Lett. 37(4), 426–428 (2016)CrossRef
18.
Zurück zum Zitat M.M. Billah, M.M. Hasan, M. Chun, J. Jang, TCAD simulation of dual-gate a-IGZO TFTs with source and drain offsets. IEEE Electron Device Lett. 37(11), 1442–1445 (2016)CrossRef M.M. Billah, M.M. Hasan, M. Chun, J. Jang, TCAD simulation of dual-gate a-IGZO TFTs with source and drain offsets. IEEE Electron Device Lett. 37(11), 1442–1445 (2016)CrossRef
19.
Zurück zum Zitat G. Baek, K. Abe, A. Kuo, H. Kumomi, J. Kanicki, Electrical properties and stability of dual-gate coplanar homojunction DC sputtered amorphous indium–gallium–zinc–oxide thin-film transistors and its application to AM-OLEDs. IEEE Trans. Electron Devices 58(12), 4344–4353 (2011)CrossRef G. Baek, K. Abe, A. Kuo, H. Kumomi, J. Kanicki, Electrical properties and stability of dual-gate coplanar homojunction DC sputtered amorphous indium–gallium–zinc–oxide thin-film transistors and its application to AM-OLEDs. IEEE Trans. Electron Devices 58(12), 4344–4353 (2011)CrossRef
20.
Zurück zum Zitat T.L. Chen, K.C. Huang, H.Y. Lin, C.H. Chou, H.H. Lin, C.W. Liu, Enhanced current drive of double-gate a-IGZO thin-film transistors. IEEE Electron Device Lett. 34(3), 417–419 (2013)CrossRef T.L. Chen, K.C. Huang, H.Y. Lin, C.H. Chou, H.H. Lin, C.W. Liu, Enhanced current drive of double-gate a-IGZO thin-film transistors. IEEE Electron Device Lett. 34(3), 417–419 (2013)CrossRef
21.
Zurück zum Zitat A. Porwal, N. Shafi, C. Sahu, Fabrication and pH sensing characteristics measurement of back gate ZnO thin film planar FET. Silicon 1–12 (2022) A. Porwal, N. Shafi, C. Sahu, Fabrication and pH sensing characteristics measurement of back gate ZnO thin film planar FET. Silicon 1–12 (2022)
22.
Zurück zum Zitat H. Li, D. Han, J. Dong, Z. Yi, X. Zhou, S. Zhang, X. Zhang, Y. Wang, Enhanced performance of atomic layer deposited thin-film transistors with high-quality ZnO/Al2O3 interface. IEEE Trans. Electron Devices 67(2), 518–523 (2020)CrossRef H. Li, D. Han, J. Dong, Z. Yi, X. Zhou, S. Zhang, X. Zhang, Y. Wang, Enhanced performance of atomic layer deposited thin-film transistors with high-quality ZnO/Al2O3 interface. IEEE Trans. Electron Devices 67(2), 518–523 (2020)CrossRef
23.
Zurück zum Zitat S. Vyas, A.D.D. Dwivedi, R.D. Dwivedi, Effect of gate dielectric on the performance of ZnO based thin film transistor. Superlattices Microstruct. 120, 223–234 (2018)CrossRef S. Vyas, A.D.D. Dwivedi, R.D. Dwivedi, Effect of gate dielectric on the performance of ZnO based thin film transistor. Superlattices Microstruct. 120, 223–234 (2018)CrossRef
24.
Zurück zum Zitat ATLAS Device Simulation Soft, USA, CA, Santa Clara, Silvaco (2022) ATLAS Device Simulation Soft, USA, CA, Santa Clara, Silvaco (2022)
Metadaten
Titel
Design and Performance Investigation of Dual-Gate ZnO Nanostructured Thin-Film Transistor
verfasst von
Dasari Srikanya
Chitrakant Sahu
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-4495-8_13

Neuer Inhalt