Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.07.2022

Design and Simulation of Physical Layer Security for Next Generation Intelligent Optical Networks

verfasst von: Valarmathi Marudhai, Shanthi Prince, Shayna Kumari

Erschienen in: Wireless Personal Communications

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

With the latest technological advancements and attractive features of next generation intelligent optical networks such as high bandwidth, low power consumption, and low transmission loss, etc., they have been considered as most viable solution to satisfy promptly growing bandwidth demands. However, main optical network components bring forth a set of security challenges and reliability issues, accompanied by new vulnerabilities within the network. This paper proposes a new design for an optical encryption and decryption method for enhancing optical network security using p–i–n photodiode which generates Pseudo Random Binary Sequence (PRBS) as a shot noise fluctuations and wavelength converter based design using Semiconductor Optical Amplifier based XOR gate which utilizes Cross-Phase Modulation. The system performance based on Bit Error Rate and Q factor are analyzed at different data rates for different link lengths up to 100 km using OptiSystem. It is observed that error free transmission with a BER of 10–12 is achieved a data rate of 10 Gbps for a link length of only 30 km for the system with PIN photodiode’s shot noise being used for PRBS sequence generation. However, wavelength conversion based system enables transmission of signal at 10Gbps signal up to a link length of 90 km.
Literatur
1.
Zurück zum Zitat Wang, D., et al. (2018). Multifunctional all-optical signal processing scheme for wavelength-division-multiplexing multicast, wavelength conversion, format conversion, and all-optical encryption using hybrid modulation format exclusive-OR gates based on four-wave mixing in highly nonlinear fiber. Applied Optics, 57(7), 1562–1568. CrossRef Wang, D., et al. (2018). Multifunctional all-optical signal processing scheme for wavelength-division-multiplexing multicast, wavelength conversion, format conversion, and all-optical encryption using hybrid modulation format exclusive-OR gates based on four-wave mixing in highly nonlinear fiber. Applied Optics, 57(7), 1562–1568. CrossRef
3.
Zurück zum Zitat Menachem. (2020). Advancements in optical data transmission and security systems. In Cryptography-recent advances and future developments. Intech Open Menachem. (2020). Advancements in optical data transmission and security systems. In Cryptography-recent advances and future developments. Intech Open
5.
Zurück zum Zitat Kotb, A., Zoiros, K. E., & Guo, C. (2019). 320 Gb/s all-optical XOR gate using semiconductor optical amplifier-Mach Zehnder nterferometer and delayed interferometer. Photonic Network Communication, 38, 177–184. CrossRef Kotb, A., Zoiros, K. E., & Guo, C. (2019). 320 Gb/s all-optical XOR gate using semiconductor optical amplifier-Mach Zehnder nterferometer and delayed interferometer. Photonic Network Communication, 38, 177–184. CrossRef
6.
Zurück zum Zitat Chen, W., Javidi, B., & Chen, X. (2014). Advances in optical security systems. Advances in Optics and Photonics, 6(2), 120–155. CrossRef Chen, W., Javidi, B., & Chen, X. (2014). Advances in optical security systems. Advances in Optics and Photonics, 6(2), 120–155. CrossRef
9.
Zurück zum Zitat Alferness, R. C. (2000). The all-optical networks. In Proc. of IEEE International Conference on Communication Technology, Vol. 1, pp. 14–15. Alferness, R. C. (2000). The all-optical networks. In Proc. of IEEE International Conference on Communication Technology, Vol. 1, pp. 14–15.
10.
Zurück zum Zitat Berthold, J., et al. (2008). Optical networking: Past, present, and future. Journal of Lightwave Technology, 26(9), 1104–1118. CrossRef Berthold, J., et al. (2008). Optical networking: Past, present, and future. Journal of Lightwave Technology, 26(9), 1104–1118. CrossRef
11.
Zurück zum Zitat Marciniak, M. (2001). Optical transparency in next generation IP over all-optical networks. In Proceedings of 2001 3rd international conference on transparent optical networks (IEEE Cat. No. 01EX488). IEEE. Marciniak, M. (2001). Optical transparency in next generation IP over all-optical networks. In Proceedings of 2001 3rd international conference on transparent optical networks (IEEE Cat. No. 01EX488). IEEE.
12.
Zurück zum Zitat Medard, M. (1998). Secured optical communication. In Proc. of ieee lasers and electro-optics society annual meeting, pp. 323–324. Medard, M. (1998). Secured optical communication. In Proc. of ieee lasers and electro-optics society annual meeting, pp. 323–324.
13.
Zurück zum Zitat Medard, M., et al. (1997). Security issues in all-optical networks.". IEEE Network, 11(3), 42–48. CrossRef Medard, M., et al. (1997). Security issues in all-optical networks.". IEEE Network, 11(3), 42–48. CrossRef
14.
Zurück zum Zitat Furdek, M. (2011). Physical-layer attacks in optical WDM networks and attack-aware network planning. European Journal of Operational Research, 178(2), 1160–1167. Furdek, M. (2011). Physical-layer attacks in optical WDM networks and attack-aware network planning. European Journal of Operational Research, 178(2), 1160–1167.
15.
Zurück zum Zitat Mas, C., Tomkos, I., & Tonguz, O. K. (2005). Failure location algorithm for transparent optical networks. IEEE Journal on Selected Areas in Communications, 23(8), 1508–1519. CrossRef Mas, C., Tomkos, I., & Tonguz, O. K. (2005). Failure location algorithm for transparent optical networks. IEEE Journal on Selected Areas in Communications, 23(8), 1508–1519. CrossRef
16.
Zurück zum Zitat Rejeb, R., Leeson, M. I., & Tomkos, I. (2010). Control and management issues in all-optical networks. IEEE Journal on Selected Areas in Communications, 5(2), 132–139. Rejeb, R., Leeson, M. I., & Tomkos, I. (2010). Control and management issues in all-optical networks. IEEE Journal on Selected Areas in Communications, 5(2), 132–139.
17.
Zurück zum Zitat Rejeb, R., et al. (2003). Securing all-optical networks. In  Proceedings of 2003 5th international conference on transparent optical networks, 2003, Vol. 1. IEEE. Rejeb, R., et al. (2003). Securing all-optical networks. In  Proceedings of 2003 5th international conference on transparent optical networks, 2003, Vol. 1. IEEE.
18.
Zurück zum Zitat Thomas, S., & Wagner, D. (2002). Insecurity in ATM-based passive optical networks. In  2002 IEEE international conference on communications. Conference proceedings. ICC 2002 (Cat. No. 02CH37333), Vol. 5. IEEE. Thomas, S., & Wagner, D. (2002). Insecurity in ATM-based passive optical networks. In  2002 IEEE international conference on communications. Conference proceedings. ICC 2002 (Cat. No. 02CH37333), Vol. 5. IEEE.
19.
Zurück zum Zitat Patel, D. S., and Parita, N. P. (2012). Security issues and attack management in AON-A review. In  2012 1st international conference on emerging technology trends in electronics, communication & networking. IEEE. Patel, D. S., and Parita, N. P. (2012). Security issues and attack management in AON-A review. In  2012 1st international conference on emerging technology trends in electronics, communication & networking. IEEE.
20.
Zurück zum Zitat Rejeb, R., Leeson, M. S., & Green, R. J. (2006). Multiple attack localization and identification in all-optical networks. Optical Switching and Networking, 3(1), 41–49. CrossRef Rejeb, R., Leeson, M. S., & Green, R. J. (2006). Multiple attack localization and identification in all-optical networks. Optical Switching and Networking, 3(1), 41–49. CrossRef
21.
Zurück zum Zitat Rejeb, R., Leeson, M. S., & Green, R. J. (2006). Fault and attack management in all-optical networks. IEEE Communications Magazine, 44(11), 79–86. CrossRef Rejeb, R., Leeson, M. S., & Green, R. J. (2006). Fault and attack management in all-optical networks. IEEE Communications Magazine, 44(11), 79–86. CrossRef
22.
Zurück zum Zitat Shaneman, K., & Stuart, G. (2004). Optical network security: technical analysis of fiber tapping mechanisms and methods for detection & prevention. In  IEEE MILCOM 2004. Military communications conference, 2004, Vol. 2. IEEE. Shaneman, K., & Stuart, G. (2004). Optical network security: technical analysis of fiber tapping mechanisms and methods for detection & prevention. In  IEEE MILCOM 2004. Military communications conference, 2004, Vol. 2. IEEE.
23.
Zurück zum Zitat Lazzez, A. (2015). Notice of violation of IEEE publication principles: All-optical networks: Security issues analysis. IEEE/OSA Journal of Optical Communications and Networking, 7(3), 136–145. CrossRef Lazzez, A. (2015). Notice of violation of IEEE publication principles: All-optical networks: Security issues analysis. IEEE/OSA Journal of Optical Communications and Networking, 7(3), 136–145. CrossRef
24.
Zurück zum Zitat Kartalopoulos, S. V. (2009). Security of information and communication networks (Vol. 15). New York: Wiley. Kartalopoulos, S. V. (2009). Security of information and communication networks (Vol. 15). New York: Wiley.
25.
Zurück zum Zitat Argyris, A., et al. (2005). Chaos-based communications at high bit rates using commercial fibre-optic links. Nature, 438(7066), 343–346. CrossRef Argyris, A., et al. (2005). Chaos-based communications at high bit rates using commercial fibre-optic links. Nature, 438(7066), 343–346. CrossRef
26.
Zurück zum Zitat Fok, M. P., & Prucnal, P. R. (2009). All-optical encryption based on interleaved waveband switching modulation for optical network security. Optics Letters, 34(9), 1315–1317. CrossRef Fok, M. P., & Prucnal, P. R. (2009). All-optical encryption based on interleaved waveband switching modulation for optical network security. Optics Letters, 34(9), 1315–1317. CrossRef
27.
Zurück zum Zitat Tawfeeq, S. K. (2009). A random number generator based on single-photon avalanche photodiode dark counts. Journal of Lightwave Technology, 27(24), 5665–5667. CrossRef Tawfeeq, S. K. (2009). A random number generator based on single-photon avalanche photodiode dark counts. Journal of Lightwave Technology, 27(24), 5665–5667. CrossRef
28.
Zurück zum Zitat Agrawal, G. P. (2012). Fiber-optic communication systems (Vol. 222). New York: Wiley. Agrawal, G. P. (2012). Fiber-optic communication systems (Vol. 222). New York: Wiley.
29.
Zurück zum Zitat Bassham III, Lawrence E., et al. (2010). Sp 800–22 rev. statistical test suite for random and pseudorandom number generators for cryptographic applications. National Institute of Standards & Technology. Bassham III, Lawrence E., et al. (2010). Sp 800–22 rev. statistical test suite for random and pseudorandom number generators for cryptographic applications. National Institute of Standards & Technology.
30.
Zurück zum Zitat Kumari, S., Valarmathi, M., & Shanthi, P. (2016). Generation of pseudorandom binary sequence using shot noise for optical encryption. In 2016 International conference on communication and signal processing (ICCSP). IEEE. Kumari, S., Valarmathi, M., & Shanthi, P. (2016). Generation of pseudorandom binary sequence using shot noise for optical encryption. In 2016 International conference on communication and signal processing (ICCSP). IEEE.
31.
Zurück zum Zitat Ishikawa, H. (Ed.). (2008). ultrafast all-optical signal processing devices. Wiley. Ishikawa, H. (Ed.). (2008). ultrafast all-optical signal processing devices. Wiley.
34.
Zurück zum Zitat Zhang, M., Wang, L., & Ye, P. (2008). All-optical xor logic gates: Technologies and experiment demonstrations. IEEE Communications Magazine, 43(5), 19–24. CrossRef Zhang, M., Wang, L., & Ye, P. (2008). All-optical xor logic gates: Technologies and experiment demonstrations. IEEE Communications Magazine, 43(5), 19–24. CrossRef
35.
Zurück zum Zitat Kang, I., Dorrer, C., & Leuthold, J. (2004). All-optical XOR operation of 40 Gbit/s phase-shift-keyed data using four-wave mixing in semiconductor optical amplifier. Electronics Letters, 40(8), 496–498. CrossRef Kang, I., Dorrer, C., & Leuthold, J. (2004). All-optical XOR operation of 40 Gbit/s phase-shift-keyed data using four-wave mixing in semiconductor optical amplifier. Electronics Letters, 40(8), 496–498. CrossRef
36.
Zurück zum Zitat Wang, Y.-P., et al. (2009). An encryption-decryption method using XOR gate based on the XPM between O-band and C-band light waves. Chinese Physics Letters, 26(7), 074219. CrossRef Wang, Y.-P., et al. (2009). An encryption-decryption method using XOR gate based on the XPM between O-band and C-band light waves. Chinese Physics Letters, 26(7), 074219. CrossRef
37.
Zurück zum Zitat Sarker, B. C., Yoshino, T., & Majumder, S. P. (2002). All-optical wavelength conversion based on cross-phase modulation (XPM) in a single-mode fiber and a Mach-Zehnder interferometer. IEEE Photonics Technology Letters, 14(3), 340–342. CrossRef Sarker, B. C., Yoshino, T., & Majumder, S. P. (2002). All-optical wavelength conversion based on cross-phase modulation (XPM) in a single-mode fiber and a Mach-Zehnder interferometer. IEEE Photonics Technology Letters, 14(3), 340–342. CrossRef
38.
Zurück zum Zitat Honzatko, P. (2010). All-optical wavelength converter based on fiber cross-phase modulation and fiber Bragg grating. Optics Communications, 283(9), 1744–1749. CrossRef Honzatko, P. (2010). All-optical wavelength converter based on fiber cross-phase modulation and fiber Bragg grating. Optics Communications, 283(9), 1744–1749. CrossRef
Metadaten
Titel
Design and Simulation of Physical Layer Security for Next Generation Intelligent Optical Networks
verfasst von
Valarmathi Marudhai
Shanthi Prince
Shayna Kumari
Publikationsdatum
01.07.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09913-6