Skip to main content
Erschienen in: Wireless Networks 1/2024

17.08.2023 | Original Paper

Design of anonymous authentication scheme for vehicle fog services using blockchain

verfasst von: Xinrui Duan, Yajun Guo, Yimin Guo

Erschienen in: Wireless Networks | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the advances in smart vehicles and fog computing, Fog computing is extended to traditional Vehicular Ad Hoc Networks (VANETs). As a geographically distributed paradigm, Vehicle Fog Service (VFS) overcomes the limitations of VANETs in real-time response and location awareness. It supports a wide range of traffic information services, such as road warnings, congestion control, and autonomous driving. Secure communication between VFS entities is a critical problem in an open network. Meanwhile, most fog nodes are deployed in the public domain and are vulnerable to physical attacks. This paper proposes a secure authentication scheme for VFS to address the above issues. The scheme combines blockchain and physical unclonable function (PUF) to achieve two-way authentication of on-board units (OBU) and road side units (RSU) with the untrusted fog nodes. Our scheme provides conditional anonymity and non-repudiation, offering recourse in case of malicious behavior. Unlike other schemes, the proposed scheme only needs to determine whether the pseudo-identity has a revocation tag instead of scanning the whole certificate revocation list (CLS), significantly reducing the computational overhead. In addition, we use the Real-Or-Random ROR model and formally prove that the proposed scheme is provably secure, and informal security analysis shows that the scheme is robust to various known attacks. Finally, compared with existing schemes, our scheme maintains lower communication and computation costs and provides more security features, which shows that our scheme is more suitable for secure VFS environments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Khan, AA., Abolhasan, M., & Ni, W. (2018). 5G next generation vanets using sdn and fog computing framework. In: 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp 1–6 Khan, AA., Abolhasan, M., & Ni, W. (2018). 5G next generation vanets using sdn and fog computing framework. In: 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp 1–6
2.
Zurück zum Zitat Tan, H., & Chung, I. (2019). Secure authentication and key management with blockchain in vanets. IEEE Access, 8, 2482–2498.CrossRef Tan, H., & Chung, I. (2019). Secure authentication and key management with blockchain in vanets. IEEE Access, 8, 2482–2498.CrossRef
3.
Zurück zum Zitat Chen, L. W., & Chen, H. M. (2020). Driver behavior monitoring and warning with dangerous driving detection based on the internet of vehicles. IEEE Transactions on Intelligent Transportation Systems, 22(11), 7232–7241.CrossRef Chen, L. W., & Chen, H. M. (2020). Driver behavior monitoring and warning with dangerous driving detection based on the internet of vehicles. IEEE Transactions on Intelligent Transportation Systems, 22(11), 7232–7241.CrossRef
4.
Zurück zum Zitat Rathore, M. S., Poongodi, M., Saurabh, P., et al. (2022). A novel trust-based security and privacy model for internet of vehicles using encryption and steganography. Computers and Electrical Engineering, 102, 108205.CrossRef Rathore, M. S., Poongodi, M., Saurabh, P., et al. (2022). A novel trust-based security and privacy model for internet of vehicles using encryption and steganography. Computers and Electrical Engineering, 102, 108205.CrossRef
5.
Zurück zum Zitat Garg, S., Singh, A., Batra, S., et al. (2018). Uav-empowered edge computing environment for cyber-threat detection in smart vehicles. IEEE Network, 32(3), 42–51.CrossRef Garg, S., Singh, A., Batra, S., et al. (2018). Uav-empowered edge computing environment for cyber-threat detection in smart vehicles. IEEE Network, 32(3), 42–51.CrossRef
6.
Zurück zum Zitat Bojjagani, S., Reddy, Y. P., Anuradha, T., et al. (2022). Secure authentication and key management protocol for deployment of internet of vehicles (iov) concerning intelligent transport systems. IEEE Transactions on Intelligent Transportation Systems, 23(12), 24698–24713.CrossRef Bojjagani, S., Reddy, Y. P., Anuradha, T., et al. (2022). Secure authentication and key management protocol for deployment of internet of vehicles (iov) concerning intelligent transport systems. IEEE Transactions on Intelligent Transportation Systems, 23(12), 24698–24713.CrossRef
7.
Zurück zum Zitat Chen, B., Wu, L., Kumar, N., et al. (2019). Lightweight searchable public-key encryption with forward privacy over iiot outsourced data. IEEE Transactions on Emerging Topics in Computing, 9(4), 1753–1764.CrossRef Chen, B., Wu, L., Kumar, N., et al. (2019). Lightweight searchable public-key encryption with forward privacy over iiot outsourced data. IEEE Transactions on Emerging Topics in Computing, 9(4), 1753–1764.CrossRef
8.
Zurück zum Zitat Aman, M. N., Javaid, U., & Sikdar, B. (2020). A privacy-preserving and scalable authentication protocol for the internet of vehicles. IEEE Internet of Things Journal, 8(2), 1123–1139.CrossRef Aman, M. N., Javaid, U., & Sikdar, B. (2020). A privacy-preserving and scalable authentication protocol for the internet of vehicles. IEEE Internet of Things Journal, 8(2), 1123–1139.CrossRef
9.
Zurück zum Zitat Shojafar, M., Cordeschi, N., & Baccarelli, E. (2019). Energy-efficient adaptive resource management for real-time vehicular cloud services. IEEE Transactions on Cloud Computing, 7(1), 196–209.CrossRef Shojafar, M., Cordeschi, N., & Baccarelli, E. (2019). Energy-efficient adaptive resource management for real-time vehicular cloud services. IEEE Transactions on Cloud Computing, 7(1), 196–209.CrossRef
10.
Zurück zum Zitat Alzubi, J. A., Alzubi, O. A., Singh, A., et al. (2022). Cloud-iiot-based electronic health record privacy-preserving by cnn and blockchain-enabled federated learning. IEEE Transactions on Industrial Informatics, 19(1), 1080–1087.CrossRef Alzubi, J. A., Alzubi, O. A., Singh, A., et al. (2022). Cloud-iiot-based electronic health record privacy-preserving by cnn and blockchain-enabled federated learning. IEEE Transactions on Industrial Informatics, 19(1), 1080–1087.CrossRef
11.
Zurück zum Zitat Zhu, C., Pastor, G., Xiao, Y., et al. (2018). Vehicular fog computing for video crowdsourcing: Applications, feasibility, and challenges. IEEE Communications Magazine, 56(10), 58–63.CrossRef Zhu, C., Pastor, G., Xiao, Y., et al. (2018). Vehicular fog computing for video crowdsourcing: Applications, feasibility, and challenges. IEEE Communications Magazine, 56(10), 58–63.CrossRef
12.
Zurück zum Zitat Yao, Y., Chang, X., Mišić, J., et al. (2018). Reliable and secure vehicular fog service provision. IEEE Internet of Things Journal, 6(1), 734–743.CrossRef Yao, Y., Chang, X., Mišić, J., et al. (2018). Reliable and secure vehicular fog service provision. IEEE Internet of Things Journal, 6(1), 734–743.CrossRef
13.
Zurück zum Zitat Guo, Y., & Guo, Y. (2021). Fogha: An efficient handover authentication for mobile devices in fog computing. Computers & Security, 108, 102358.CrossRef Guo, Y., & Guo, Y. (2021). Fogha: An efficient handover authentication for mobile devices in fog computing. Computers & Security, 108, 102358.CrossRef
14.
Zurück zum Zitat Keshari, N., Singh, D., & Maurya, A. K. (2022). A survey on vehicular fog computing: Current state-of-the-art and future directions. Vehicular Communications, 38, 100512.CrossRef Keshari, N., Singh, D., & Maurya, A. K. (2022). A survey on vehicular fog computing: Current state-of-the-art and future directions. Vehicular Communications, 38, 100512.CrossRef
15.
Zurück zum Zitat Hue, TTK., Tuan, NGDND., Braeken, A., & et al. (2022). Effective authentication mechanism for vehicular fog infrastructure. In: 2022 IEEE Ninth International Conference on Communications and Electronics (ICCE), pp 93–98 Hue, TTK., Tuan, NGDND., Braeken, A., & et al. (2022). Effective authentication mechanism for vehicular fog infrastructure. In: 2022 IEEE Ninth International Conference on Communications and Electronics (ICCE), pp 93–98
16.
Zurück zum Zitat Lin, J., Yu, W., Zhang, N., et al. (2017). A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet of Things Journal, 4(5), 1125–1142.CrossRef Lin, J., Yu, W., Zhang, N., et al. (2017). A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet of Things Journal, 4(5), 1125–1142.CrossRef
17.
Zurück zum Zitat Abbas, S., Talib, M. A., Ahmed, A., et al. (2021). Blockchain-based authentication in internet of vehicles: A survey. Sensors, 21(23), 7927.CrossRef Abbas, S., Talib, M. A., Ahmed, A., et al. (2021). Blockchain-based authentication in internet of vehicles: A survey. Sensors, 21(23), 7927.CrossRef
18.
Zurück zum Zitat Wu, A., Guo, Y., & Guo, Y. (2023). A decentralized lightweight blockchain-based authentication mechanism for internet of vehicles. Peer-to-Peer Networking and Applications, 16, 1340–1353.CrossRef Wu, A., Guo, Y., & Guo, Y. (2023). A decentralized lightweight blockchain-based authentication mechanism for internet of vehicles. Peer-to-Peer Networking and Applications, 16, 1340–1353.CrossRef
19.
Zurück zum Zitat Ferrag, M. A., Derdour, M., Mukherjee, M., et al. (2018). Blockchain technologies for the internet of things: Research issues and challenges. IEEE Internet of Things Journal, 6(2), 2188–2204.CrossRef Ferrag, M. A., Derdour, M., Mukherjee, M., et al. (2018). Blockchain technologies for the internet of things: Research issues and challenges. IEEE Internet of Things Journal, 6(2), 2188–2204.CrossRef
20.
Zurück zum Zitat Khalique, A., Singh, K., & Sood, S. (2010). Implementation of elliptic curve digital signature algorithm. International Journal of Computer Applications, 2(2), 21–27.CrossRef Khalique, A., Singh, K., & Sood, S. (2010). Implementation of elliptic curve digital signature algorithm. International Journal of Computer Applications, 2(2), 21–27.CrossRef
21.
Zurück zum Zitat Kaur, K., Garg, S., Kaddoum, G., & et al. (2019). Blockchain-based lightweight authentication mechanism for vehicular fog infrastructure. In: 2019 IEEE International conference on communications workshops (ICC workshops), pp 1–6 Kaur, K., Garg, S., Kaddoum, G., & et al. (2019). Blockchain-based lightweight authentication mechanism for vehicular fog infrastructure. In: 2019 IEEE International conference on communications workshops (ICC workshops), pp 1–6
22.
Zurück zum Zitat Jo, H. J., Kim, I. S., & Lee, D. H. (2017). Reliable cooperative authentication for vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 19(4), 1065–1079.CrossRef Jo, H. J., Kim, I. S., & Lee, D. H. (2017). Reliable cooperative authentication for vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 19(4), 1065–1079.CrossRef
23.
Zurück zum Zitat Hu, W., Hu, Y., Yao, W., et al. (2019). A blockchain-based byzantine consensus algorithm for information authentication of the internet of vehicles. IEEE Access, 7, 139703–139711.CrossRef Hu, W., Hu, Y., Yao, W., et al. (2019). A blockchain-based byzantine consensus algorithm for information authentication of the internet of vehicles. IEEE Access, 7, 139703–139711.CrossRef
24.
Zurück zum Zitat Sharma, R., & Chakraborty, S. (2018). Blockapp: using blockchain for authentication and privacy preservation in iov. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp 1–6 Sharma, R., & Chakraborty, S. (2018). Blockapp: using blockchain for authentication and privacy preservation in iov. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp 1–6
25.
Zurück zum Zitat Ma, Z., Zhang, J., Guo, Y., et al. (2020). An efficient decentralized key management mechanism for vanet with blockchain. IEEE Transactions on Vehicular Technology, 69(6), 5836–5849.CrossRef Ma, Z., Zhang, J., Guo, Y., et al. (2020). An efficient decentralized key management mechanism for vanet with blockchain. IEEE Transactions on Vehicular Technology, 69(6), 5836–5849.CrossRef
26.
Zurück zum Zitat Malik, N., Nanda, P., Arora, A., & et al. (2018). Blockchain based secured identity authentication and expeditious revocation framework for vehicular networks. In: 2018 17th IEEE international conference on trust, security and privacy in computing and communications/12th IEEE international conference on big data science and engineering (TrustCom/BigDataSE), pp 674–679 Malik, N., Nanda, P., Arora, A., & et al. (2018). Blockchain based secured identity authentication and expeditious revocation framework for vehicular networks. In: 2018 17th IEEE international conference on trust, security and privacy in computing and communications/12th IEEE international conference on big data science and engineering (TrustCom/BigDataSE), pp 674–679
27.
Zurück zum Zitat Liu, Y., Wang, Y., & Chang, G. (2017). Efficient privacy-preserving dual authentication and key agreement scheme for secure v2v communications in an iov paradigm. IEEE Transactions on Intelligent Transportation Systems, 18(10), 2740–2749.CrossRef Liu, Y., Wang, Y., & Chang, G. (2017). Efficient privacy-preserving dual authentication and key agreement scheme for secure v2v communications in an iov paradigm. IEEE Transactions on Intelligent Transportation Systems, 18(10), 2740–2749.CrossRef
28.
Zurück zum Zitat Lu, Z., Wang, Q., Qu, G., et al. (2019). A blockchain-based privacy-preserving authentication scheme for vanets. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(12), 2792–2801.CrossRef Lu, Z., Wang, Q., Qu, G., et al. (2019). A blockchain-based privacy-preserving authentication scheme for vanets. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(12), 2792–2801.CrossRef
29.
Zurück zum Zitat Xu, Z., Liang, W., Li, K. C., et al. (2021). A blockchain-based roadside unit-assisted authentication and key agreement protocol for internet of vehicles. Journal of Parallel and Distributed Computing, 149, 29–39.CrossRef Xu, Z., Liang, W., Li, K. C., et al. (2021). A blockchain-based roadside unit-assisted authentication and key agreement protocol for internet of vehicles. Journal of Parallel and Distributed Computing, 149, 29–39.CrossRef
30.
Zurück zum Zitat Javaid, U., Aman, M. N., & Sikdar, B. (2020). A scalable protocol for driving trust management in internet of vehicles with blockchain. IEEE Internet of Things Journal, 7(12), 11815–11829.CrossRef Javaid, U., Aman, M. N., & Sikdar, B. (2020). A scalable protocol for driving trust management in internet of vehicles with blockchain. IEEE Internet of Things Journal, 7(12), 11815–11829.CrossRef
31.
Zurück zum Zitat Pappu, R., Recht, B., Taylor, J., et al. (2002). Physical one-way functions. Science, 297(5589), 2026–2030.CrossRef Pappu, R., Recht, B., Taylor, J., et al. (2002). Physical one-way functions. Science, 297(5589), 2026–2030.CrossRef
32.
Zurück zum Zitat Bagga, P., Sutrala, A. K., Das, A. K., et al. (2021). Blockchain-based batch authentication protocol for internet of vehicles. Journal of Systems Architecture, 113, 101877.CrossRef Bagga, P., Sutrala, A. K., Das, A. K., et al. (2021). Blockchain-based batch authentication protocol for internet of vehicles. Journal of Systems Architecture, 113, 101877.CrossRef
33.
Zurück zum Zitat Yao, Y., Chang, X., Mišić, J., et al. (2019). Bla: Blockchain-assisted lightweight anonymous authentication for distributed vehicular fog services. IEEE Internet of Things Journal, 6(2), 3775–3784.CrossRef Yao, Y., Chang, X., Mišić, J., et al. (2019). Bla: Blockchain-assisted lightweight anonymous authentication for distributed vehicular fog services. IEEE Internet of Things Journal, 6(2), 3775–3784.CrossRef
34.
Zurück zum Zitat Feng, Q., He, D., Zeadally, S., et al. (2019). Bpas: Blockchain-assisted privacy-preserving authentication system for vehicular ad hoc networks. IEEE Transactions on Industrial Informatics, 16(6), 4146–4155.CrossRef Feng, Q., He, D., Zeadally, S., et al. (2019). Bpas: Blockchain-assisted privacy-preserving authentication system for vehicular ad hoc networks. IEEE Transactions on Industrial Informatics, 16(6), 4146–4155.CrossRef
35.
Zurück zum Zitat Bethencourt, J., Sahai, A., & Waters, B. (2007). Ciphertext-policy attribute-based encryption. In: 2007 IEEE symposium on security and privacy (SP’07), pp 321–334 Bethencourt, J., Sahai, A., & Waters, B. (2007). Ciphertext-policy attribute-based encryption. In: 2007 IEEE symposium on security and privacy (SP’07), pp 321–334
36.
Zurück zum Zitat Vangala, A., Bera, B., Saha, S., et al. (2020). Blockchain-enabled certificate-based authentication for vehicle accident detection and notification in intelligent transportation systems. IEEE Sensors Journal, 21(14), 15824–15838.CrossRef Vangala, A., Bera, B., Saha, S., et al. (2020). Blockchain-enabled certificate-based authentication for vehicle accident detection and notification in intelligent transportation systems. IEEE Sensors Journal, 21(14), 15824–15838.CrossRef
37.
Zurück zum Zitat Underwood, S. (2016). Blockchain beyond bitcoin. Communications of the ACM, 59(11), 15–17.CrossRef Underwood, S. (2016). Blockchain beyond bitcoin. Communications of the ACM, 59(11), 15–17.CrossRef
38.
Zurück zum Zitat Kshetri, N. (2017). Can blockchain strengthen the internet of things? IT professional, 19(4), 68–72.CrossRef Kshetri, N. (2017). Can blockchain strengthen the internet of things? IT professional, 19(4), 68–72.CrossRef
39.
Zurück zum Zitat Lin, C., He, D., Huang, X., et al. (2020). Bcppa: A blockchain-based conditional privacy-preserving authentication protocol for vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 22(12), 7408–7420.CrossRef Lin, C., He, D., Huang, X., et al. (2020). Bcppa: A blockchain-based conditional privacy-preserving authentication protocol for vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 22(12), 7408–7420.CrossRef
40.
Zurück zum Zitat Bera, B., Saha, S., Das, A. K., et al. (2020). Blockchain-envisioned secure data delivery and collection scheme for 5g-based iot-enabled internet of drones environment. IEEE Transactions on Vehicular Technology, 69(8), 9097–9111.CrossRef Bera, B., Saha, S., Das, A. K., et al. (2020). Blockchain-envisioned secure data delivery and collection scheme for 5g-based iot-enabled internet of drones environment. IEEE Transactions on Vehicular Technology, 69(8), 9097–9111.CrossRef
41.
Zurück zum Zitat Alzubi, J. A. (2021). Blockchain-based lamport merkle digital signature: authentication tool in iot healthcare. Computer Communications, 170, 200–208.CrossRef Alzubi, J. A. (2021). Blockchain-based lamport merkle digital signature: authentication tool in iot healthcare. Computer Communications, 170, 200–208.CrossRef
42.
Zurück zum Zitat Kim, M., Lee, J., Oh, J., et al. (2022). Blockchain based energy trading scheme for vehicle-to-vehicle using decentralized identifiers. Applied Energy, 322, 119445.CrossRef Kim, M., Lee, J., Oh, J., et al. (2022). Blockchain based energy trading scheme for vehicle-to-vehicle using decentralized identifiers. Applied Energy, 322, 119445.CrossRef
43.
Zurück zum Zitat Zheng, Z., Xie, S., Dai, H. N., et al. (2018). Blockchain challenges and opportunities: A survey. International journal of web and grid services, 14(4), 352–375.CrossRef Zheng, Z., Xie, S., Dai, H. N., et al. (2018). Blockchain challenges and opportunities: A survey. International journal of web and grid services, 14(4), 352–375.CrossRef
44.
Zurück zum Zitat He, X., Niu, X., Wang, Y., et al. (2022). A hierarchical blockchain-assisted conditional privacy-preserving authentication scheme for vehicular ad hoc networks. Sensors, 22(6), 2299.CrossRef He, X., Niu, X., Wang, Y., et al. (2022). A hierarchical blockchain-assisted conditional privacy-preserving authentication scheme for vehicular ad hoc networks. Sensors, 22(6), 2299.CrossRef
45.
Zurück zum Zitat Niranjanamurthy, M., Nithya, B., & Jagannatha, S. (2019). Analysis of blockchain technology: Pros, cons and swot. Cluster Computing, 22(6), 14743–14757.CrossRef Niranjanamurthy, M., Nithya, B., & Jagannatha, S. (2019). Analysis of blockchain technology: Pros, cons and swot. Cluster Computing, 22(6), 14743–14757.CrossRef
46.
Zurück zum Zitat Zheng, Z., Xie, S., Dai, H. N., et al. (2020). An overview on smart contracts: Challenges, advances and platforms. Future Generation Computer Systems, 105, 475–491.CrossRef Zheng, Z., Xie, S., Dai, H. N., et al. (2020). An overview on smart contracts: Challenges, advances and platforms. Future Generation Computer Systems, 105, 475–491.CrossRef
47.
Zurück zum Zitat Aman, M. N., Chua, K. C., & Sikdar, B. (2017). Mutual authentication in iot systems using physical unclonable functions. IEEE Internet of Things Journal, 4(5), 1327–1340.CrossRef Aman, M. N., Chua, K. C., & Sikdar, B. (2017). Mutual authentication in iot systems using physical unclonable functions. IEEE Internet of Things Journal, 4(5), 1327–1340.CrossRef
48.
Zurück zum Zitat Sahoo, D. P., Nguyen, P. H., Mukhopadhyay, D., et al. (2015). A case of lightweight puf constructions: Cryptanalysis and machine learning attacks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(8), 1334–1343.CrossRef Sahoo, D. P., Nguyen, P. H., Mukhopadhyay, D., et al. (2015). A case of lightweight puf constructions: Cryptanalysis and machine learning attacks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(8), 1334–1343.CrossRef
49.
Zurück zum Zitat Baturone, I., Prada-Delgado, M. A., & Eiroa, S. (2015). Improved generation of identifiers, secret keys, and random numbers from srams. IEEE Transactions on Information Forensics and Security, 10(12), 2653–2668.CrossRef Baturone, I., Prada-Delgado, M. A., & Eiroa, S. (2015). Improved generation of identifiers, secret keys, and random numbers from srams. IEEE Transactions on Information Forensics and Security, 10(12), 2653–2668.CrossRef
50.
Zurück zum Zitat Johnson, D., Menezes, A., & Vanstone, S. (2001). The elliptic curve digital signature algorithm (ecdsa). International Journal of Information Security, 1(1), 36–63.CrossRef Johnson, D., Menezes, A., & Vanstone, S. (2001). The elliptic curve digital signature algorithm (ecdsa). International Journal of Information Security, 1(1), 36–63.CrossRef
51.
Zurück zum Zitat Jiang, Q., Huang, X., Zhang, N., et al. (2019). Shake to communicate: Secure handshake acceleration-based pairing mechanism for wrist worn devices. IEEE Internet of Things Journal, 6(3), 5618–5630.CrossRef Jiang, Q., Huang, X., Zhang, N., et al. (2019). Shake to communicate: Secure handshake acceleration-based pairing mechanism for wrist worn devices. IEEE Internet of Things Journal, 6(3), 5618–5630.CrossRef
52.
Zurück zum Zitat Xie, J., Tang, H., Huang, T., et al. (2019). A survey of blockchain technology applied to smart cities: Research issues and challenges. IEEE Communications Surveys & Tutorials, 21(3), 2794–2830.CrossRef Xie, J., Tang, H., Huang, T., et al. (2019). A survey of blockchain technology applied to smart cities: Research issues and challenges. IEEE Communications Surveys & Tutorials, 21(3), 2794–2830.CrossRef
53.
Zurück zum Zitat Dolev, D., & Yao, A. (1983). On the security of public key protocols. IEEE Transactions on Information Theory, 29(2), 198–208.MathSciNetCrossRef Dolev, D., & Yao, A. (1983). On the security of public key protocols. IEEE Transactions on Information Theory, 29(2), 198–208.MathSciNetCrossRef
54.
Zurück zum Zitat Canetti, R., & Krawczyk, H. (2001). Analysis of key-exchange protocols and their use for building secure channels. In: International conference on the theory and applications of cryptographic techniques, Springer, pp 453–474 Canetti, R., & Krawczyk, H. (2001). Analysis of key-exchange protocols and their use for building secure channels. In: International conference on the theory and applications of cryptographic techniques, Springer, pp 453–474
55.
Zurück zum Zitat Guo, Y., Zhang, Z., & Guo, Y. (2022). Secfhome: Secure remote authentication in fog-enabled smart home environment. Computer Networks, 207, 108818.CrossRef Guo, Y., Zhang, Z., & Guo, Y. (2022). Secfhome: Secure remote authentication in fog-enabled smart home environment. Computer Networks, 207, 108818.CrossRef
56.
Zurück zum Zitat Spreitzer, R., Moonsamy, V., Korak, T., et al. (2017). Systematic classification of side-channel attacks: A case study for mobile devices. IEEE Communications Surveys & Tutorials, 20(1), 465–488.CrossRef Spreitzer, R., Moonsamy, V., Korak, T., et al. (2017). Systematic classification of side-channel attacks: A case study for mobile devices. IEEE Communications Surveys & Tutorials, 20(1), 465–488.CrossRef
57.
Zurück zum Zitat Guo, Y., Zhang, Z., & Guo, Y. (2021). Anonymous authenticated key agreement and group proof protocol for wearable computing. IEEE Transactions on Mobile Computing, 21(8), 2718–2731.CrossRef Guo, Y., Zhang, Z., & Guo, Y. (2021). Anonymous authenticated key agreement and group proof protocol for wearable computing. IEEE Transactions on Mobile Computing, 21(8), 2718–2731.CrossRef
58.
Zurück zum Zitat Abdalla, M., Fouque, P. A., & Pointcheval, D. (2005). Password-based authenticated key exchange in the three-party setting. International workshop on public key cryptography (pp. 65–84). Berlin: Springer. Abdalla, M., Fouque, P. A., & Pointcheval, D. (2005). Password-based authenticated key exchange in the three-party setting. International workshop on public key cryptography (pp. 65–84). Berlin: Springer.
59.
Zurück zum Zitat Guo, Y., Zhang, Z., & Guo, Y. (2020). Fog-centric authenticated key agreement scheme without trusted parties. IEEE Systems Journal, 15(4), 5057–5066.CrossRef Guo, Y., Zhang, Z., & Guo, Y. (2020). Fog-centric authenticated key agreement scheme without trusted parties. IEEE Systems Journal, 15(4), 5057–5066.CrossRef
60.
Zurück zum Zitat Chang, C. C., & Le, H. D. (2015). A provably secure, efficient, and flexible authentication scheme for ad hoc wireless sensor networks. IEEE Transactions on Wireless Communications, 15(1), 357–366.CrossRef Chang, C. C., & Le, H. D. (2015). A provably secure, efficient, and flexible authentication scheme for ad hoc wireless sensor networks. IEEE Transactions on Wireless Communications, 15(1), 357–366.CrossRef
61.
Zurück zum Zitat Srinivas, J., Das, A. K., Kumar, N., et al. (2018). Cloud centric authentication for wearable healthcare monitoring system. IEEE Transactions on Dependable and Secure Computing, 17(5), 942–956.CrossRef Srinivas, J., Das, A. K., Kumar, N., et al. (2018). Cloud centric authentication for wearable healthcare monitoring system. IEEE Transactions on Dependable and Secure Computing, 17(5), 942–956.CrossRef
62.
Zurück zum Zitat Eddine, M. S., Ferrag, M. A., Friha, O., et al. (2021). Easbf: An efficient authentication scheme over blockchain for fog computing-enabled internet of vehicles. Journal of Information Security and Applications, 59, 102802.CrossRef Eddine, M. S., Ferrag, M. A., Friha, O., et al. (2021). Easbf: An efficient authentication scheme over blockchain for fog computing-enabled internet of vehicles. Journal of Information Security and Applications, 59, 102802.CrossRef
63.
Zurück zum Zitat He, D., Zeadally, S., Kumar, N., et al. (2016). Efficient and anonymous mobile user authentication protocol using self-certified public key cryptography for multi-server architectures. IEEE transactions on information forensics and security, 11(9), 2052–2064.CrossRef He, D., Zeadally, S., Kumar, N., et al. (2016). Efficient and anonymous mobile user authentication protocol using self-certified public key cryptography for multi-server architectures. IEEE transactions on information forensics and security, 11(9), 2052–2064.CrossRef
64.
Zurück zum Zitat Shao, X., Guo, Y., & Guo, Y. (2022). A puf-based anonymous authentication protocol for wireless medical sensor networks. Wireless Networks, 28(8), 3753–3770.CrossRef Shao, X., Guo, Y., & Guo, Y. (2022). A puf-based anonymous authentication protocol for wireless medical sensor networks. Wireless Networks, 28(8), 3753–3770.CrossRef
Metadaten
Titel
Design of anonymous authentication scheme for vehicle fog services using blockchain
verfasst von
Xinrui Duan
Yajun Guo
Yimin Guo
Publikationsdatum
17.08.2023
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 1/2024
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-023-03471-w

Weitere Artikel der Ausgabe 1/2024

Wireless Networks 1/2024 Zur Ausgabe

Neuer Inhalt