Skip to main content
Erschienen in: Theoretical and Computational Fluid Dynamics 4/2023

15.06.2023 | Original Article

Design of optimal wing maneuvers in a transverse gust encounter through iterated simulation or experiment

verfasst von: Xianzhang Xu, Antonios Gementzopoulos, Girguis Sedky, Anya R. Jones, Francis D. Lagor

Erschienen in: Theoretical and Computational Fluid Dynamics | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wing–gust encounters cause harmful lift transients that can be mitigated through maneuvering of the wing. This paper presents a method to generate an open-loop (i.e., prescribed) maneuver that optimally regulates the lift on the wing during a transverse gust encounter. Obtaining an optimal maneuver is important for laboratory experiments on the physics of wing–gust interactions and may be useful for the future design of feedback controllers. Prior work of the authors has shown that an Iterative Maneuver Optimization (IMO) framework can generate an optimal maneuver by using a surrogate model to propose a control signal that is then tested in experiment or high-fidelity simulation. The input to the surrogate model is updated to account for differences between the test data and the expected output. The optimal maneuver is obtained through iteration of this process. This paper simplifies the IMO method by replacing the surrogate model with the classical lift model of Theodorsen, removing the process of optimization over the surrogate model, and removing the requirement to know the time-averaged profile of the gust. The proposed method, referred to as Simplified IMO (SIMO), only requires input and output data collected from simulations or experiments that interact with the gust. Numerical simulations using a Leading Edge Suction Parameter modulated Discrete Vortex Model are presented to generate the input and output data of the wing–gust encounters for this paper. Experiments in a towing tank also validated the SIMO method. The results show an optimal pitch maneuver and an optimal plunge maneuver that can each regulate lift during a transverse gust encounter.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zarovy, S., Costello, M., Mehta, A., Gremillion, G., Miller, D., Ranganathan, B., Humbert, J.S., Samuel, P.: Experimental study of gust effects on micro air vehicles. In: AIAA Atmospheric Flight Mechanics Conference, p. 7818 (2010) Zarovy, S., Costello, M., Mehta, A., Gremillion, G., Miller, D., Ranganathan, B., Humbert, J.S., Samuel, P.: Experimental study of gust effects on micro air vehicles. In: AIAA Atmospheric Flight Mechanics Conference, p. 7818 (2010)
2.
Zurück zum Zitat Moulin, B., Karpel, M.: Gust loads alleviation using special control surfaces. J. Aircr. 44(1), 17–25 (2007)CrossRef Moulin, B., Karpel, M.: Gust loads alleviation using special control surfaces. J. Aircr. 44(1), 17–25 (2007)CrossRef
7.
Zurück zum Zitat Cook, R.G., Palacios, R., Goulart, P.: Robust gust alleviation and stabilization of very flexible aircraft. AIAA J. 51(2), 330–340 (2013)CrossRef Cook, R.G., Palacios, R., Goulart, P.: Robust gust alleviation and stabilization of very flexible aircraft. AIAA J. 51(2), 330–340 (2013)CrossRef
8.
Zurück zum Zitat Oduyela, A., Slegers, N.: Gust mitigation of micro air vehicles using passive articulated wings. Sci. World J. 2014 (2014) Oduyela, A., Slegers, N.: Gust mitigation of micro air vehicles using passive articulated wings. Sci. World J. 2014 (2014)
9.
Zurück zum Zitat Jones, A.R.: Gust encounters of rigid wings: Taming the parameter space. Phys. Rev. Fluids 5(11), 110513 (2020)CrossRef Jones, A.R.: Gust encounters of rigid wings: Taming the parameter space. Phys. Rev. Fluids 5(11), 110513 (2020)CrossRef
10.
Zurück zum Zitat Ellington, C.P., den Berg, C.V., Willmott, A.P.: Leading-edge vortices in insect flight. Nature 384(December), 626–630 (1990) Ellington, C.P., den Berg, C.V., Willmott, A.P.: Leading-edge vortices in insect flight. Nature 384(December), 626–630 (1990)
13.
Zurück zum Zitat Andreu-Angulo, I., Babinsky, H., Biler, H., Sedky, G., Jones, A.R.: Effect of transverse gust velocity profiles. AIAA J. 58(12), 5123–5133 (2020)CrossRef Andreu-Angulo, I., Babinsky, H., Biler, H., Sedky, G., Jones, A.R.: Effect of transverse gust velocity profiles. AIAA J. 58(12), 5123–5133 (2020)CrossRef
14.
Zurück zum Zitat Andreu-Angulo, I., Babinsky, H.: Mitigation of airfoil gust loads through pitch. AIAA J. 60(9), 5273–5285 (2022)CrossRef Andreu-Angulo, I., Babinsky, H.: Mitigation of airfoil gust loads through pitch. AIAA J. 60(9), 5273–5285 (2022)CrossRef
16.
Zurück zum Zitat Xu, X., Lagor, F.D.: Optimal pitching in a transverse gust encounter using a modified goman-khrabrov model. In: AIAA AVIATION 2021 FORUM, p. 2937 (2021) Xu, X., Lagor, F.D.: Optimal pitching in a transverse gust encounter using a modified goman-khrabrov model. In: AIAA AVIATION 2021 FORUM, p. 2937 (2021)
17.
Zurück zum Zitat Sedky, G.: Mitigation of transverse gusts via open- and closed-loop pitching maneuvers. Ph.D. dissertation, University of Maryland (2022) Sedky, G.: Mitigation of transverse gusts via open- and closed-loop pitching maneuvers. Ph.D. dissertation, University of Maryland (2022)
18.
Zurück zum Zitat Theodorsen, T., Mutchler, W.: General theory of aerodynamic instability and the mechanism of flutter (1935) Theodorsen, T., Mutchler, W.: General theory of aerodynamic instability and the mechanism of flutter (1935)
19.
Zurück zum Zitat Wagner, H.: Über die entstehung des dynamischen auftriebes von tragflügeln. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angew. Math. und Mech. 5(1), 17–35 (1925)CrossRefMATH Wagner, H.: Über die entstehung des dynamischen auftriebes von tragflügeln. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angew. Math. und Mech. 5(1), 17–35 (1925)CrossRefMATH
20.
Zurück zum Zitat Küssner, H.G.: Zusammenfassender bericht über den instationären auftrieb von flügeln. Luftfahrtforschung 13(12), 410–424 (1936)MATH Küssner, H.G.: Zusammenfassender bericht über den instationären auftrieb von flügeln. Luftfahrtforschung 13(12), 410–424 (1936)MATH
22.
Zurück zum Zitat Sedky, G., Gementzopoulos, A., Andreu-Angulo, I., Lagor, F.D., Jones, A.R.: Physics of gust response mitigation in open-loop pitching manoeuvres. J. Fluid Mech. 944, 38 (2022)MathSciNetCrossRef Sedky, G., Gementzopoulos, A., Andreu-Angulo, I., Lagor, F.D., Jones, A.R.: Physics of gust response mitigation in open-loop pitching manoeuvres. J. Fluid Mech. 944, 38 (2022)MathSciNetCrossRef
23.
Zurück zum Zitat Corkery, S.J., Babinsky, H.: An investigation into gust shear layer vorticity and the added mass force for a transverse wing-gust encounter. In: AIAA Scitech 2019 Forum, p. 1145 (2019) Corkery, S.J., Babinsky, H.: An investigation into gust shear layer vorticity and the added mass force for a transverse wing-gust encounter. In: AIAA Scitech 2019 Forum, p. 1145 (2019)
24.
Zurück zum Zitat Katz, J., Plotkin, A.: Low-Speed Aerodynamics, vol. 13, 2nd edn. Cambridge University Press, Cambridge (2001)CrossRefMATH Katz, J., Plotkin, A.: Low-Speed Aerodynamics, vol. 13, 2nd edn. Cambridge University Press, Cambridge (2001)CrossRefMATH
26.
Zurück zum Zitat Andreu Angulo, I., Babinsky, H.: Negating gust effects by actively pitching a wing. In: AIAA Scitech 2020 Forum, p. 1057 (2020) Andreu Angulo, I., Babinsky, H.: Negating gust effects by actively pitching a wing. In: AIAA Scitech 2020 Forum, p. 1057 (2020)
29.
Zurück zum Zitat Milano, M., Gharib, M.: Uncovering the physics of flapping flat plates with artificial evolution. J. Fluid Mech. 534, 403–409 (2005)CrossRefMATH Milano, M., Gharib, M.: Uncovering the physics of flapping flat plates with artificial evolution. J. Fluid Mech. 534, 403–409 (2005)CrossRefMATH
30.
Zurück zum Zitat Peng, D., Milano, M.: Lift generation with optimal elastic pitching for a flapping plate. J. Fluid Mech. 717 (2013) Peng, D., Milano, M.: Lift generation with optimal elastic pitching for a flapping plate. J. Fluid Mech. 717 (2013)
31.
Zurück zum Zitat Quinn, D.B., Lauder, G.V., Smits, A.J.: Maximizing the efficiency of a flexible propulsor using experimental optimization. J. Fluid Mech. 767, 430–448 (2015)CrossRef Quinn, D.B., Lauder, G.V., Smits, A.J.: Maximizing the efficiency of a flexible propulsor using experimental optimization. J. Fluid Mech. 767, 430–448 (2015)CrossRef
32.
Zurück zum Zitat Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25(1), 539–575 (1993)MathSciNetCrossRef Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25(1), 539–575 (1993)MathSciNetCrossRef
34.
36.
Zurück zum Zitat Proctor, J.L., Brunton, S.L., Kutz, J.N.: Dynamic mode decomposition with control. SIAM J. Appl. Dyn. Syst. 15(1), 142–161 (2016)MathSciNetCrossRefMATH Proctor, J.L., Brunton, S.L., Kutz, J.N.: Dynamic mode decomposition with control. SIAM J. Appl. Dyn. Syst. 15(1), 142–161 (2016)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Deem, E.A., Cattafesta, L.N., Hemati, M.S., Zhang, H., Rowley, C., Mittal, R.: Adaptive separation control of a laminar boundary layer using online dynamic mode decomposition. J. Fluid Mech. 903 (2020) Deem, E.A., Cattafesta, L.N., Hemati, M.S., Zhang, H., Rowley, C., Mittal, R.: Adaptive separation control of a laminar boundary layer using online dynamic mode decomposition. J. Fluid Mech. 903 (2020)
38.
Zurück zum Zitat Hjalmarsson, H., Gevers, M., Gunnarsson, S., Lequin, O.: Iterative feedback tuning: theory and applications. IEEE Control Syst. Mag. 18(4), 26–41 (1998)CrossRef Hjalmarsson, H., Gevers, M., Gunnarsson, S., Lequin, O.: Iterative feedback tuning: theory and applications. IEEE Control Syst. Mag. 18(4), 26–41 (1998)CrossRef
39.
Zurück zum Zitat Uchiyama, M., Mihara, M.: Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 86(1), 271–278 (1978)CrossRef Uchiyama, M., Mihara, M.: Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 86(1), 271–278 (1978)CrossRef
40.
Zurück zum Zitat Xu, X., Gementzopoulos, A., Sedky, G., Jones, A.R., Lagor, F.D.: Iterative maneuver optimization in a transverse gust encounter. AIAA J., pp. 1–17 (2023) Xu, X., Gementzopoulos, A., Sedky, G., Jones, A.R., Lagor, F.D.: Iterative maneuver optimization in a transverse gust encounter. AIAA J., pp. 1–17 (2023)
41.
Zurück zum Zitat Brunton, S.L., Rowley, C.W.: Empirical state-space representations for Theodorsen’s lift model. J. Fluids Struct. 38, 174–186 (2013)CrossRef Brunton, S.L., Rowley, C.W.: Empirical state-space representations for Theodorsen’s lift model. J. Fluids Struct. 38, 174–186 (2013)CrossRef
42.
Zurück zum Zitat Xia, X., Mohseni, K.: Unsteady aerodynamics and vortex-sheet formation of a two-dimensional airfoil. J. Fluid Mech. 830, 439–478 (2017)MathSciNetCrossRefMATH Xia, X., Mohseni, K.: Unsteady aerodynamics and vortex-sheet formation of a two-dimensional airfoil. J. Fluid Mech. 830, 439–478 (2017)MathSciNetCrossRefMATH
44.
Zurück zum Zitat Xia, X., Mohseni, K.: Lift evaluation of a two-dimensional pitching flat plate. Phys. Fluids 25(9), 091901 (2013)CrossRef Xia, X., Mohseni, K.: Lift evaluation of a two-dimensional pitching flat plate. Phys. Fluids 25(9), 091901 (2013)CrossRef
45.
47.
Zurück zum Zitat Xu, X., Lagor, F.D.: Simplified iterative maneuver optimization in a transverse gust encounter. In: AIAA SCITECH 2023 Forum, p. 2478 (2023) Xu, X., Lagor, F.D.: Simplified iterative maneuver optimization in a transverse gust encounter. In: AIAA SCITECH 2023 Forum, p. 2478 (2023)
50.
Zurück zum Zitat Hemati, M.S., Eldredge, J.D., Speyer, J.L.: Improving vortex models via optimal control theory. J. Fluids Struct. 49, 91–111 (2014)CrossRef Hemati, M.S., Eldredge, J.D., Speyer, J.L.: Improving vortex models via optimal control theory. J. Fluids Struct. 49, 91–111 (2014)CrossRef
51.
Zurück zum Zitat Bryson, A.E., Ho, Y.-C.: Applied Optimal Control: Optimization, Estimation, and Control, 1st edn. Routledge, London (1975) Bryson, A.E., Ho, Y.-C.: Applied Optimal Control: Optimization, Estimation, and Control, 1st edn. Routledge, London (1975)
52.
Zurück zum Zitat Leishman, G.J.: Principles of Helicopter Aerodynamics, 2nd edn. Cambridge University, Cambridge (2006) Leishman, G.J.: Principles of Helicopter Aerodynamics, 2nd edn. Cambridge University, Cambridge (2006)
53.
Zurück zum Zitat Jones, R.T.: Operational treatment of the nonuniform-lift theory in airplane dynamics. Technical report (1938) Jones, R.T.: Operational treatment of the nonuniform-lift theory in airplane dynamics. Technical report (1938)
54.
Zurück zum Zitat Perrotta, G., Jones, A.R.: Unsteady forcing on a flat-plate wing in large transverse gusts. Exp. Fluids 58, 1–11 (2017)CrossRef Perrotta, G., Jones, A.R.: Unsteady forcing on a flat-plate wing in large transverse gusts. Exp. Fluids 58, 1–11 (2017)CrossRef
Metadaten
Titel
Design of optimal wing maneuvers in a transverse gust encounter through iterated simulation or experiment
verfasst von
Xianzhang Xu
Antonios Gementzopoulos
Girguis Sedky
Anya R. Jones
Francis D. Lagor
Publikationsdatum
15.06.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Theoretical and Computational Fluid Dynamics / Ausgabe 4/2023
Print ISSN: 0935-4964
Elektronische ISSN: 1432-2250
DOI
https://doi.org/10.1007/s00162-023-00659-w

Weitere Artikel der Ausgabe 4/2023

Theoretical and Computational Fluid Dynamics 4/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.