Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 3/2020

18.12.2019

Designed structure of bilayer TiO2–Nb2O5 photoanode for increasing the performance of dye-sensitized solar cells

verfasst von: Mohammad Memari, Nafiseh Memarian

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Here, we investigate the effect of crystalline structure and design configuration of photoanode semiconductor on physical properties and electron transport parameters of dye-sensitized solar cells based on niobium pentoxide (Nb2O5) composition. At the first step, the effect of calcination on structural properties of Nb2O5 has been studied. Phase transformation from mixed monoclinic/orthorhombic to pure monoclinic phase has been observed. The performance of cells is then investigated for different designs of photoanode, including pure Nb2O5, pure TiO2 and bilayer structure composed of TiO2/calcined Nb2O5. The highest performance belonged to the cell prepared bilayer photoanode. Bilayer structure facilitated charge extraction which leads to the drastically improvement of photoconversion efficiency. Remarkable increase in JSC is reported comparing to cells without TiO2 layer, from about 0.08 to around 5.7 mA cm−2, leading to conversion efficiency as high as 1.48% in the best cell. Results of dye loading measurement and impedance spectroscopy analysis revealed that this higher photocurrent is attributed to both more injected electrons from dye to photoanode and higher electron lifetime. Furthermore, inhibition of electron back-transfer from the composite layer to the electrolyte as well as low recombination resistance plays critical roles in such dramatically photoconversion efficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat B. O’Regan, M. Gräzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–739 (1991) B. O’Regan, M. Gräzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–739 (1991)
2.
Zurück zum Zitat M. Grätzel, Photoelectrochemical cells. Nature 414, 338–344 (2001) M. Grätzel, Photoelectrochemical cells. Nature 414, 338–344 (2001)
3.
Zurück zum Zitat N.A. Karim, U. Mehmood, H. Zahid, T. Asif, Nanostructured photoanode and counter electrode materials for efficient dye-sensitized solar cells (DSSCs). Sol. Energy 185, 165–188 (2019) N.A. Karim, U. Mehmood, H. Zahid, T. Asif, Nanostructured photoanode and counter electrode materials for efficient dye-sensitized solar cells (DSSCs). Sol. Energy 185, 165–188 (2019)
4.
Zurück zum Zitat R. Jose, V. Thavasi, S. Ramakrishna, Metal oxides for dye-sensitized solar cells. J. Am. Ceram. Soc. 92, 289–301 (2009) R. Jose, V. Thavasi, S. Ramakrishna, Metal oxides for dye-sensitized solar cells. J. Am. Ceram. Soc. 92, 289–301 (2009)
5.
Zurück zum Zitat C. Cavallo, F. Di Pascasio, A. Latini, M. Bonomo, D. Dini, Nanostructured semiconductor materials for dye-sensitized solar cells. J. Nanomater. 2017, 5323164 (2017) C. Cavallo, F. Di Pascasio, A. Latini, M. Bonomo, D. Dini, Nanostructured semiconductor materials for dye-sensitized solar cells. J. Nanomater. 2017, 5323164 (2017)
6.
Zurück zum Zitat D. Sengupta, P. Das, B. Mondal, K. Mukherjee, Renew. Sustain. Energy Rev. 60, 356–376 (2016) D. Sengupta, P. Das, B. Mondal, K. Mukherjee, Renew. Sustain. Energy Rev. 60, 356–376 (2016)
7.
Zurück zum Zitat R. Milan, G.S. Selopal, M. Epifani, M.M. Natile, G. Sberveglieri, A. Vomiero, I. Concina, ZnO@ SnO2 engineered composite photoanodes for dye sensitized solar cells. Sci. Rep. 5, 14523 (2015) R. Milan, G.S. Selopal, M. Epifani, M.M. Natile, G. Sberveglieri, A. Vomiero, I. Concina, ZnO@ SnO2 engineered composite photoanodes for dye sensitized solar cells. Sci. Rep. 5, 14523 (2015)
8.
Zurück zum Zitat T. Chen, Y. Shang, Sh Hao, L. Tian, Y. Hou, Ch. Yang, Electrochim. Acta. 282, 743–749 (2018) T. Chen, Y. Shang, Sh Hao, L. Tian, Y. Hou, Ch. Yang, Electrochim. Acta. 282, 743–749 (2018)
9.
Zurück zum Zitat H. Sun, H. Kurotaki, K. Kanomata, F. Hirose, M.S. White, T. Yoshida, ZnO/TiO2 core–shell photoelectrodes for dye-sensitized solar cells by screen printing and room temperature ALD. Microsyst. Technol. 24, 647–654 (2018) H. Sun, H. Kurotaki, K. Kanomata, F. Hirose, M.S. White, T. Yoshida, ZnO/TiO2 core–shell photoelectrodes for dye-sensitized solar cells by screen printing and room temperature ALD. Microsyst. Technol. 24, 647–654 (2018)
10.
Zurück zum Zitat A. Pang, X. Sun, H. Ruan, Y. Li, S. Dai, M. Wei, Highly efficient dye-sensitized solar cells composed of TiO2@ SnO2 core–shell microspheres. Nano Energy 5, 82–90 (2014) A. Pang, X. Sun, H. Ruan, Y. Li, S. Dai, M. Wei, Highly efficient dye-sensitized solar cells composed of TiO2@ SnO2 core–shell microspheres. Nano Energy 5, 82–90 (2014)
11.
Zurück zum Zitat Y. Zhao, X. Zhou, L. Ye, S.C.E. Tsang, Nanostructured Nb2O5 catalysts. Nano Rev. 3, 17631 (2012) Y. Zhao, X. Zhou, L. Ye, S.C.E. Tsang, Nanostructured Nb2O5 catalysts. Nano Rev. 3, 17631 (2012)
12.
Zurück zum Zitat A. Latini, R. Panetta, Energies 11, 975 (2018) A. Latini, R. Panetta, Energies 11, 975 (2018)
13.
Zurück zum Zitat A. Le Viet, R. Jose, M.V. Reddy, B.V.R. Chowdari, S. Ramakrishna, J. Phys. Chem. C 114, 21795–21800 (2010) A. Le Viet, R. Jose, M.V. Reddy, B.V.R. Chowdari, S. Ramakrishna, J. Phys. Chem. C 114, 21795–21800 (2010)
14.
Zurück zum Zitat M.H. Habibi, R. Mokhtari, J. Inorg. Organomet. Polym. 22, 158–165 (2012) M.H. Habibi, R. Mokhtari, J. Inorg. Organomet. Polym. 22, 158–165 (2012)
15.
Zurück zum Zitat C.L. Ücker, L.T. Gularte, C.D. Fernandes, V. Goetzke, E.C. Moreira, C.W. Raubach, M.L. Moreira, S.S. Cava, Investigation of the properties of niobium pentoxide for use in dye-sensitized solar cells. J. Am. Ceram. Soc. 102, 1884–1892 (2016) C.L. Ücker, L.T. Gularte, C.D. Fernandes, V. Goetzke, E.C. Moreira, C.W. Raubach, M.L. Moreira, S.S. Cava, Investigation of the properties of niobium pentoxide for use in dye-sensitized solar cells. J. Am. Ceram. Soc. 102, 1884–1892 (2016)
16.
Zurück zum Zitat A.M. Rabaa, J. Bautista-Ruíza, M.R. Joya, Mater. Res. 19, 1381–1387 (2016) A.M. Rabaa, J. Bautista-Ruíza, M.R. Joya, Mater. Res. 19, 1381–1387 (2016)
17.
Zurück zum Zitat V. Ojha, K. Kato, M.A. Kabbani, G. Babu, P.M. Ajayan, Nb2O5/reduced graphene oxide nanocomposite anode for high power hybrid supercapacitor applications. Chem. Select. 4, 1098–1102 (2019) V. Ojha, K. Kato, M.A. Kabbani, G. Babu, P.M. Ajayan, Nb2O5/reduced graphene oxide nanocomposite anode for high power hybrid supercapacitor applications. Chem. Select. 4, 1098–1102 (2019)
18.
Zurück zum Zitat X. Wang, Q. Li, L. Zhang, Z. Hu, L. Yu, T. Jiang, C. Lu, C. Yan, J. Sun, Z. Liu, Caging Nb2O5 nanowires in PECVD-derived graphene capsules toward bendable sodium-ion hybrid supercapacitors. Adv. Mater. 30, 1800963 (2018) X. Wang, Q. Li, L. Zhang, Z. Hu, L. Yu, T. Jiang, C. Lu, C. Yan, J. Sun, Z. Liu, Caging Nb2O5 nanowires in PECVD-derived graphene capsules toward bendable sodium-ion hybrid supercapacitors. Adv. Mater. 30, 1800963 (2018)
19.
Zurück zum Zitat G. Falk, M. Borlaf, M.J. López-Muñoz, J.C. Fariñas, J.B.R. Neto, R. Moreno, Microwave-assisted synthesis of Nb2O5 for photocatalytic application of nanopowders and thin films. J. Mater. Res. 32, 3271–3278 (2017) G. Falk, M. Borlaf, M.J. López-Muñoz, J.C. Fariñas, J.B.R. Neto, R. Moreno, Microwave-assisted synthesis of Nb2O5 for photocatalytic application of nanopowders and thin films. J. Mater. Res. 32, 3271–3278 (2017)
20.
Zurück zum Zitat R. Rathnasamy, P. Thangasamy, V. Aravindhan, P. Sathyanarayanan, V. Alagan, Facile one-pot solvothermal-assisted synthesis of uniform sphere-like Nb2O5 nanostructures for photocatalytic applications. Res. Chem. Intermed. 45, 3571–3584 (2019) R. Rathnasamy, P. Thangasamy, V. Aravindhan, P. Sathyanarayanan, V. Alagan, Facile one-pot solvothermal-assisted synthesis of uniform sphere-like Nb2O5 nanostructures for photocatalytic applications. Res. Chem. Intermed. 45, 3571–3584 (2019)
21.
Zurück zum Zitat D.C. Castro, R.P. Cavalcante, J. Jorge, M.A.U. Martines, L.C.S. Oliveira, G.A. Casagrande, A. Machulek Jr., J. Braz. Chem. Soc. 27, 303–313 (2016) D.C. Castro, R.P. Cavalcante, J. Jorge, M.A.U. Martines, L.C.S. Oliveira, G.A. Casagrande, A. Machulek Jr., J. Braz. Chem. Soc. 27, 303–313 (2016)
22.
Zurück zum Zitat M.M. Qadir, Y. Li, A. Biesiekierski, C. Wen, Optimized fabrication and characterization of TiO2–Nb2O5–ZrO2 nanotubes on β-phase TiZr35Nb28 alloy for biomedical applications via the Taguchi method. ACS Biomater. Sci. Eng. 5, 2750–2761 (2019) M.M. Qadir, Y. Li, A. Biesiekierski, C. Wen, Optimized fabrication and characterization of TiO2–Nb2O5–ZrO2 nanotubes on β-phase TiZr35Nb28 alloy for biomedical applications via the Taguchi method. ACS Biomater. Sci. Eng. 5, 2750–2761 (2019)
23.
Zurück zum Zitat P. Amaravathy, S. Sowndarya, S. Sathyanarayanan, N. Rajendran, Novel sol gel coating of Nb2O5 on magnesium alloy for biomedical applications. Surf. Coat. Technol. 244, 131–141 (2014) P. Amaravathy, S. Sowndarya, S. Sathyanarayanan, N. Rajendran, Novel sol gel coating of Nb2O5 on magnesium alloy for biomedical applications. Surf. Coat. Technol. 244, 131–141 (2014)
24.
Zurück zum Zitat M. Kalisz, M. Grobelny, M. Mazur, M. Zdrojek, D. Wojcieszak, M. Świniarski, J. Judek, D. Kaczmarek, Thin Solid Films 589, 356–363 (2012) M. Kalisz, M. Grobelny, M. Mazur, M. Zdrojek, D. Wojcieszak, M. Świniarski, J. Judek, D. Kaczmarek, Thin Solid Films 589, 356–363 (2012)
25.
Zurück zum Zitat Z. Wang, J. Lou, X. Zheng, W.-H. Zhang, Y. Qin, Solution Processed Nb2O5 Electrodes for High Efficient Ultraviolet Light Stable Planar Perovskite Solar Cells. ACS Sustain. Chem. Eng. 7, 7421–7429 (2019) Z. Wang, J. Lou, X. Zheng, W.-H. Zhang, Y. Qin, Solution Processed Nb2O5 Electrodes for High Efficient Ultraviolet Light Stable Planar Perovskite Solar Cells. ACS Sustain. Chem. Eng. 7, 7421–7429 (2019)
26.
Zurück zum Zitat B. Gu, Y. Zhu, H. Lu, W. Tian, L. Li, Sol. Energy 166, 187–194 (2018) B. Gu, Y. Zhu, H. Lu, W. Tian, L. Li, Sol. Energy 166, 187–194 (2018)
27.
Zurück zum Zitat S. Suresh, G.E. Unni, M. Satyanarayana, A.S. Nair, V.P.M. Pillai, Electrochimica Acta 289, 1–12 (2018) S. Suresh, G.E. Unni, M. Satyanarayana, A.S. Nair, V.P.M. Pillai, Electrochimica Acta 289, 1–12 (2018)
28.
Zurück zum Zitat S. Suresh, G.E. Unni, M. Satyanarayana, A.S. Nair, V.P.M. Pillai, J. Colloid Interface Sci. 524, 236–244 (2018) S. Suresh, G.E. Unni, M. Satyanarayana, A.S. Nair, V.P.M. Pillai, J. Colloid Interface Sci. 524, 236–244 (2018)
29.
Zurück zum Zitat S. Suresh, G.E. Unni, C. Ni, R.S. Sreedharan, R.R. Krishnan, M. Satyanarayana, M. Shanmugam, V.P.M. Pillai, Appl. Surf. Sci. 419, 720–732 (2017) S. Suresh, G.E. Unni, C. Ni, R.S. Sreedharan, R.R. Krishnan, M. Satyanarayana, M. Shanmugam, V.P.M. Pillai, Appl. Surf. Sci. 419, 720–732 (2017)
30.
Zurück zum Zitat A. Sacco, M.S.D. Bella, M. Gerosa, A. Chiodoni, S. Bianco, M. Mosca, R. Macaluso, C. Cali, C.F. Pirri, Thin Solid Films 574, 38 (2015) A. Sacco, M.S.D. Bella, M. Gerosa, A. Chiodoni, S. Bianco, M. Mosca, R. Macaluso, C. Cali, C.F. Pirri, Thin Solid Films 574, 38 (2015)
31.
Zurück zum Zitat J. Xia, N. Masaki, K. Jiang, S. Yanagida, J. Phys. Chem. C 111, 8092 (2007) J. Xia, N. Masaki, K. Jiang, S. Yanagida, J. Phys. Chem. C 111, 8092 (2007)
32.
Zurück zum Zitat J. Kim, J. Kim, J. Nanosci. Nanotechnol. 11, 7335–7338 (2011) J. Kim, J. Kim, J. Nanosci. Nanotechnol. 11, 7335–7338 (2011)
33.
Zurück zum Zitat Hu Xiaoyan, H. Wang, ZnO/Nb2O5 core/shell nanorod array photoanode for dye-sensitized solar cells. Front. Optoelectron. 11, 285–290 (2018) Hu Xiaoyan, H. Wang, ZnO/Nb2O5 core/shell nanorod array photoanode for dye-sensitized solar cells. Front. Optoelectron. 11, 285–290 (2018)
34.
Zurück zum Zitat N.I. Beedri, P.K. Baviskar, V.P. Bhalekar, C.V. Jagtap, A.M. Asiri, S.R. Jadkar, H.M. Pathan, Phys. Status Solidi A 215, 1800236 (2018) N.I. Beedri, P.K. Baviskar, V.P. Bhalekar, C.V. Jagtap, A.M. Asiri, S.R. Jadkar, H.M. Pathan, Phys. Status Solidi A 215, 1800236 (2018)
35.
Zurück zum Zitat J. Nguu, F. Nyongesa, R. Musembi, B. Aduda, J. Mater. Phys. Chem. 6, 1–8 (2018) J. Nguu, F. Nyongesa, R. Musembi, B. Aduda, J. Mater. Phys. Chem. 6, 1–8 (2018)
36.
Zurück zum Zitat N.I. Beedri, P.K. Baviskar, A.T. Supekar, S.R. Jadkar, H.M. Pathan, Bilayered ZnO/Nb2O5 photoanode for dye sensitized solar cell. Int. J. Modern Phys. B 32, 1840046 (2018) N.I. Beedri, P.K. Baviskar, A.T. Supekar, S.R. Jadkar, H.M. Pathan, Bilayered ZnO/Nb2O5 photoanode for dye sensitized solar cell. Int. J. Modern Phys. B 32, 1840046 (2018)
37.
Zurück zum Zitat L. Chu, W. Liu, Yu. Aiai, Z. Qin, R. Hu, H. Shu, Q.-P. Luo, Y. Min, J. Yang, X.A. Li, Sol. Energy 153, 584–589 (2017) L. Chu, W. Liu, Yu. Aiai, Z. Qin, R. Hu, H. Shu, Q.-P. Luo, Y. Min, J. Yang, X.A. Li, Sol. Energy 153, 584–589 (2017)
38.
Zurück zum Zitat S. Ito, T.N. Murakami, P. Comte, P. Liska, C. Grätzel, M.K. Nazeeruddin, M. Grätzel, Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516, 4613–4619 (2008) S. Ito, T.N. Murakami, P. Comte, P. Liska, C. Grätzel, M.K. Nazeeruddin, M. Grätzel, Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516, 4613–4619 (2008)
39.
Zurück zum Zitat S. Ito, P. Chen, P. Comte, M.K. Nazeeruddin, P. Liska, P. Pechy, M. Gratzel, Prog. Photovolt: Res. Appl. 15, 603–612 (2007) S. Ito, P. Chen, P. Comte, M.K. Nazeeruddin, P. Liska, P. Pechy, M. Gratzel, Prog. Photovolt: Res. Appl. 15, 603–612 (2007)
40.
Zurück zum Zitat Y. Meng, Y. Lin, Y. Lin, J. Mater. Sci. Mater. Electron. 24, 5117–5121 (2013) Y. Meng, Y. Lin, Y. Lin, J. Mater. Sci. Mater. Electron. 24, 5117–5121 (2013)
41.
Zurück zum Zitat W. Li, R. Liang, A. Hu, Z. Huang, Y.N. Zhou, Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO 2 photocatalysts. RSC Adv. 4, 36959 (2014) W. Li, R. Liang, A. Hu, Z. Huang, Y.N. Zhou, Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO 2 photocatalysts. RSC Adv. 4, 36959 (2014)
43.
Zurück zum Zitat S.R. Aghdaee, V. Soleimanian, Anisotropic line broadening in nanocrystalline cadmium sulfide prepared by hydrothermal reaction. J. Cryst. Growth 341, 66–71 (2012) S.R. Aghdaee, V. Soleimanian, Anisotropic line broadening in nanocrystalline cadmium sulfide prepared by hydrothermal reaction. J. Cryst. Growth 341, 66–71 (2012)
44.
Zurück zum Zitat S.L. Wang, P.G. Li, H.W. Zhu, W.H. Tang, Controllable synthesis and photocatalytic property of uniform CuO/Cu2O composite hollow microspheres. Powder Technol. 230, 48–53 (2012) S.L. Wang, P.G. Li, H.W. Zhu, W.H. Tang, Controllable synthesis and photocatalytic property of uniform CuO/Cu2O composite hollow microspheres. Powder Technol. 230, 48–53 (2012)
45.
Zurück zum Zitat V. Venkatramu, M. Giarola, G. Mariotto, S. Enzo, S. Polizzi, C.K. Jayasankar, F. Piccinelli, M. Bettinelli, A. Speghini, Nanocrystalline lanthanide-doped Lu3Ga5O12 garnets: interesting materials for light-emitting devices. Nanotechnology 21, 175703 (2010) V. Venkatramu, M. Giarola, G. Mariotto, S. Enzo, S. Polizzi, C.K. Jayasankar, F. Piccinelli, M. Bettinelli, A. Speghini, Nanocrystalline lanthanide-doped Lu3Ga5O12 garnets: interesting materials for light-emitting devices. Nanotechnology 21, 175703 (2010)
46.
Zurück zum Zitat S. Sain, S. Patra, S.K. Pradhan, Quickest ever single-step mechanosynthesis of Cd0.5 Zn0.5 S quantum dots: nanostructure and optical characterizations. Mater. Res. Bull. 47, 1062–1072 (2012) S. Sain, S. Patra, S.K. Pradhan, Quickest ever single-step mechanosynthesis of Cd0.5 Zn0.5 S quantum dots: nanostructure and optical characterizations. Mater. Res. Bull. 47, 1062–1072 (2012)
47.
Zurück zum Zitat Q. Wali, Z.H. Bakr, N.A. Manshor, A. Fakharuddin, R. Jose, Sol. Energy 132, 395–404 (2016) Q. Wali, Z.H. Bakr, N.A. Manshor, A. Fakharuddin, R. Jose, Sol. Energy 132, 395–404 (2016)
48.
Zurück zum Zitat X. Jin, C. Liu, Xu Jing, Q. Wang, Di Chen, Size-controlled synthesis of mesoporous Nb2O5 microspheres for dye sensitized solar cells. RSC Adv. 4, 35546–35553 (2014) X. Jin, C. Liu, Xu Jing, Q. Wang, Di Chen, Size-controlled synthesis of mesoporous Nb2O5 microspheres for dye sensitized solar cells. RSC Adv. 4, 35546–35553 (2014)
49.
Zurück zum Zitat N. Memarian, I. Concina, A. Braga, S.M. Rozati, A. Vomiero, G. Sberveglieri, Angew. Chem. Int. Ed. 50, 12321–12325 (2011) N. Memarian, I. Concina, A. Braga, S.M. Rozati, A. Vomiero, G. Sberveglieri, Angew. Chem. Int. Ed. 50, 12321–12325 (2011)
50.
Zurück zum Zitat M.S. Akhtar, A facile synthesis of ZnO nanoparticles and its application as photoanode for dye sensitized solar cells. Sci. Adv. Mater. 7, 1137–1142 (2015) M.S. Akhtar, A facile synthesis of ZnO nanoparticles and its application as photoanode for dye sensitized solar cells. Sci. Adv. Mater. 7, 1137–1142 (2015)
51.
Zurück zum Zitat S.K. Hau, H.-L. Yip, O. Acton, N.S. Baek, H. Maa, A.K.-Y. Jen, Interfacial modification to improve inverted polymer solar cells. J. Mater. Chem. 18, 5113–5119 (2008) S.K. Hau, H.-L. Yip, O. Acton, N.S. Baek, H. Maa, A.K.-Y. Jen, Interfacial modification to improve inverted polymer solar cells. J. Mater. Chem. 18, 5113–5119 (2008)
52.
Zurück zum Zitat C.M. Proctor, T.-Q. Nguyen, Effect of leakage current and shunt resistance on the light intensity dependence of organic solar cells. Appl. Phys. Lett. 106, 083301 (2015) C.M. Proctor, T.-Q. Nguyen, Effect of leakage current and shunt resistance on the light intensity dependence of organic solar cells. Appl. Phys. Lett. 106, 083301 (2015)
54.
Zurück zum Zitat C.S. Rusche, F.P. Gasparin, E.R. Costa, A. Krenzinger, Sol. Energy 133, 35–43 (2016) C.S. Rusche, F.P. Gasparin, E.R. Costa, A. Krenzinger, Sol. Energy 133, 35–43 (2016)
55.
Zurück zum Zitat K. Subalakshmi, J. Senthilselvan, Sol. Energy 171, 914–928 (2018) K. Subalakshmi, J. Senthilselvan, Sol. Energy 171, 914–928 (2018)
56.
Zurück zum Zitat G.S. Selopal, N. Memarian, R. Milan, I. Concina, G. Sberveglieri, A. Vomiero, ACS Appl. Mater. Interfaces 6, 11236–11244 (2014) G.S. Selopal, N. Memarian, R. Milan, I. Concina, G. Sberveglieri, A. Vomiero, ACS Appl. Mater. Interfaces 6, 11236–11244 (2014)
57.
Zurück zum Zitat X. Liu, R. Yuan, Y. Liu, S. Zhu, J. Lin, X. Chen, Niobium pentoxide nanotube powder for efficient dye-sensitized solar cells. New J. Chem. 40, 6276–6280 (2016) X. Liu, R. Yuan, Y. Liu, S. Zhu, J. Lin, X. Chen, Niobium pentoxide nanotube powder for efficient dye-sensitized solar cells. New J. Chem. 40, 6276–6280 (2016)
Metadaten
Titel
Designed structure of bilayer TiO2–Nb2O5 photoanode for increasing the performance of dye-sensitized solar cells
verfasst von
Mohammad Memari
Nafiseh Memarian
Publikationsdatum
18.12.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 3/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02762-3

Weitere Artikel der Ausgabe 3/2020

Journal of Materials Science: Materials in Electronics 3/2020 Zur Ausgabe