Skip to main content
Erschienen in: Intelligent Service Robotics 1/2024

19.09.2023 | Original Research Paper

Detecting deformation of a soft cylindrical structure using piezoelectric sensors

verfasst von: Jiyong Min, Hojoon Kim, Youngsu Cha

Erschienen in: Intelligent Service Robotics | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we propose a model for the electrical responses of a soft cylindrical structure with shear deformations using piezoelectric sensors. Specifically, to analyze the cylindrical structure during movement, we assumed that a shear force was applied to the flat surface on the top of the structure. Using this force, we established a model using the Euler–Bernoulli beam theory and estimated the electrical responses of the sensors generated by its deformation. To validate the theoretical analysis, a soft cylindrical structure was fabricated using silicone containing piezoelectric sensors. Moreover, a series of tests were performed by applying a tensile testing machine and vibration exciter to the soft structure. During the experiments, we observed the sensor outputs while generating vibrations in the form of triangular and sinusoidal waves. The experimental outputs demonstrate that the sensors can distinguish the displacements and directions of the structural deformations, similar to our predictive model, through the voltage outputs and phase variations of the sensors. Moreover, parametric studies were performed to investigate the sensor responses under structural deformations affected by four parameters related to the material and external forces: the Young’s modulus, radius, mass density, and frequency of the sinusoidal shear force.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Whitesides GM (2018) Soft robotics. Angew Chem Int Ed 57(16):4258–4273CrossRef Whitesides GM (2018) Soft robotics. Angew Chem Int Ed 57(16):4258–4273CrossRef
2.
Zurück zum Zitat Lipson H (2014) Challenges and opportunities for design, simulation, and fabrication of soft robots. Soft Rob 1(1):21–27CrossRef Lipson H (2014) Challenges and opportunities for design, simulation, and fabrication of soft robots. Soft Rob 1(1):21–27CrossRef
3.
Zurück zum Zitat Trivedi D, Rahn CD, Kier WM, Walker ID (2008) Soft robotics: biological inspiration, state of the art, and future research. Appl Bionics Biomech 5(3):99–117CrossRef Trivedi D, Rahn CD, Kier WM, Walker ID (2008) Soft robotics: biological inspiration, state of the art, and future research. Appl Bionics Biomech 5(3):99–117CrossRef
4.
Zurück zum Zitat Youn JH, Mun H, Kyung KU (2021) A wearable soft tactile actuator with high output force for fingertip interaction. IEEE Access 9:30206–30215CrossRef Youn JH, Mun H, Kyung KU (2021) A wearable soft tactile actuator with high output force for fingertip interaction. IEEE Access 9:30206–30215CrossRef
5.
Zurück zum Zitat Fras J, Noh Y, Macias M, Wurdemann H, Althoefer K (2018) Bio-inspired octopus robot based on novel soft fluidic actuator. In: 2018 IEEE international conference on robotics and automation (ICRA), pp 1583–1588 Fras J, Noh Y, Macias M, Wurdemann H, Althoefer K (2018) Bio-inspired octopus robot based on novel soft fluidic actuator. In: 2018 IEEE international conference on robotics and automation (ICRA), pp 1583–1588
6.
Zurück zum Zitat Xie Z, Domel AG, An N, Green C, Gong Z, Wang T, Knubben EM, Weaver JC, Bertoldi K, Wen L (2020) Octopus arm-inspired tapered soft actuators with suckers for improved grasping. Soft Rob 7(5):639–648CrossRef Xie Z, Domel AG, An N, Green C, Gong Z, Wang T, Knubben EM, Weaver JC, Bertoldi K, Wen L (2020) Octopus arm-inspired tapered soft actuators with suckers for improved grasping. Soft Rob 7(5):639–648CrossRef
7.
Zurück zum Zitat Sol JAHP, Peeketi AR, Vyas N, Schenning APHJ, Annabattula RK, Debije MG (2019) Butterfly proboscis-inspired tight rolling tapered soft actuators. Chem Commun 55(12):1726–1729CrossRef Sol JAHP, Peeketi AR, Vyas N, Schenning APHJ, Annabattula RK, Debije MG (2019) Butterfly proboscis-inspired tight rolling tapered soft actuators. Chem Commun 55(12):1726–1729CrossRef
8.
Zurück zum Zitat Katzschmann RK, Marchese AD, Rus D (2015) Autonomous object manipulation using a soft planar grasping manipulator. Soft Rob 2(4):155–164CrossRef Katzschmann RK, Marchese AD, Rus D (2015) Autonomous object manipulation using a soft planar grasping manipulator. Soft Rob 2(4):155–164CrossRef
9.
Zurück zum Zitat Marchese AD, Komorowski K, Onal CD, Rus D (2014) Design and control of a soft and continuously deformable 2D robotic manipulation system. In: 2014 IEEE international conference on robotics and automation (ICRA), pp 2189–2196 Marchese AD, Komorowski K, Onal CD, Rus D (2014) Design and control of a soft and continuously deformable 2D robotic manipulation system. In: 2014 IEEE international conference on robotics and automation (ICRA), pp 2189–2196
10.
Zurück zum Zitat Lee YM, Choi HR, Koo JC (2022) Analytical approach to deformation of a soft rotary actuator with double curvature shell shape. J Korea Rob Soc 17(1):68–75CrossRef Lee YM, Choi HR, Koo JC (2022) Analytical approach to deformation of a soft rotary actuator with double curvature shell shape. J Korea Rob Soc 17(1):68–75CrossRef
11.
Zurück zum Zitat Hashem R, Stommel M, Cheng LK, Xu W (2021) Design and characterization of a bellows-driven soft pneumatic actuator. IEEE ASME Trans Mechatron 26(5):2327–2338CrossRef Hashem R, Stommel M, Cheng LK, Xu W (2021) Design and characterization of a bellows-driven soft pneumatic actuator. IEEE ASME Trans Mechatron 26(5):2327–2338CrossRef
12.
Zurück zum Zitat Martinez RV, Fish CR, Chen X, Whitesides GM (2012) Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Adv Func Mater 22(7):1376–1384CrossRef Martinez RV, Fish CR, Chen X, Whitesides GM (2012) Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Adv Func Mater 22(7):1376–1384CrossRef
13.
Zurück zum Zitat Ranzani T, Gerboni G, Cianchetti M, Menciassi A (2015) A bioinspired soft manipulator for minimally invasive surgery. Bioinspir Biomim 10(3):035008CrossRef Ranzani T, Gerboni G, Cianchetti M, Menciassi A (2015) A bioinspired soft manipulator for minimally invasive surgery. Bioinspir Biomim 10(3):035008CrossRef
14.
Zurück zum Zitat Dawood AB, Fras J, Aljaber F, Mintz Y, Arezzo A, Godaba H, Althoefer K (2021) Fusing dexterity and perception for soft robot-assisted minimally invasive surgery: what we learnt from STIFF-FLOP. Appl Sci 11(14):6586CrossRef Dawood AB, Fras J, Aljaber F, Mintz Y, Arezzo A, Godaba H, Althoefer K (2021) Fusing dexterity and perception for soft robot-assisted minimally invasive surgery: what we learnt from STIFF-FLOP. Appl Sci 11(14):6586CrossRef
15.
Zurück zum Zitat Gul JZ, Yang YJ, Su KY, Choi KH (2017) Omni directional multimaterial soft cylindrical actuator and its application as a steerable catheter. Soft Rob 4(3):224–240CrossRef Gul JZ, Yang YJ, Su KY, Choi KH (2017) Omni directional multimaterial soft cylindrical actuator and its application as a steerable catheter. Soft Rob 4(3):224–240CrossRef
16.
Zurück zum Zitat Pfeil S, Henke M, Katzer K, Zimmermann M, Gerlach G (2020) A worm-like biomimetic crawling robot based on cylindrical dielectric elastomer actuators. Front Robot AI 7:9CrossRef Pfeil S, Henke M, Katzer K, Zimmermann M, Gerlach G (2020) A worm-like biomimetic crawling robot based on cylindrical dielectric elastomer actuators. Front Robot AI 7:9CrossRef
17.
Zurück zum Zitat Elgeneidy K, Lohse N, Jackson M (2018) Bending angle prediction and control of soft pneumatic actuators with embedded flex sensors—a data-driven approach. Mechatronics 50:234–247CrossRef Elgeneidy K, Lohse N, Jackson M (2018) Bending angle prediction and control of soft pneumatic actuators with embedded flex sensors—a data-driven approach. Mechatronics 50:234–247CrossRef
18.
Zurück zum Zitat Elgeneidy K, Neumann G, Jackson M, Lohse N (2018) Directly printable flexible strain sensors for bending and contact feedback of soft actuators. Front Robot AI 5:2CrossRef Elgeneidy K, Neumann G, Jackson M, Lohse N (2018) Directly printable flexible strain sensors for bending and contact feedback of soft actuators. Front Robot AI 5:2CrossRef
19.
Zurück zum Zitat Costa JC, Spina F, Lugoda P, Garcia-Garcia L, Roggen D, Münzenrieder N (2019) Flexible sensors-from materials to applications. Technologies 7(2):35CrossRef Costa JC, Spina F, Lugoda P, Garcia-Garcia L, Roggen D, Münzenrieder N (2019) Flexible sensors-from materials to applications. Technologies 7(2):35CrossRef
20.
Zurück zum Zitat Wurdemann HA, Sareh S, Shafti A, Noh Y, Faragasso A, Chathuranga DS, Liu H, Hirai S, Althoefer K (2015) Embedded electro-conductive yarn for shape sensing of soft robotic manipulators. In: 2015 37th Annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 8026–8029 Wurdemann HA, Sareh S, Shafti A, Noh Y, Faragasso A, Chathuranga DS, Liu H, Hirai S, Althoefer K (2015) Embedded electro-conductive yarn for shape sensing of soft robotic manipulators. In: 2015 37th Annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 8026–8029
21.
Zurück zum Zitat Chhetry A, Das PS, Yoon H, Park JY (2018) A sandpaper-inspired flexible and stretchable resistive sensor for pressure and strain measurement. Org Electron 62:581–590CrossRef Chhetry A, Das PS, Yoon H, Park JY (2018) A sandpaper-inspired flexible and stretchable resistive sensor for pressure and strain measurement. Org Electron 62:581–590CrossRef
22.
Zurück zum Zitat Matsuzaki R, Todoroki A (2007) Wireless flexible capacitive sensor based on ultra-flexible epoxy resin for strain measurement of automobile tires. Sens Actuators A 140(1):32–42CrossRef Matsuzaki R, Todoroki A (2007) Wireless flexible capacitive sensor based on ultra-flexible epoxy resin for strain measurement of automobile tires. Sens Actuators A 140(1):32–42CrossRef
23.
Zurück zum Zitat Fujimoto KT, Watkins JK, Phero T, Litteken D, Tsai K, Bingham T, Ranganatha KL, Johnson BC, Deng Z, Jaques B, Estrada D (2020) Aerosol jet printed capacitive strain gauge for soft structural materials. Npj Flex Electron 4:32CrossRef Fujimoto KT, Watkins JK, Phero T, Litteken D, Tsai K, Bingham T, Ranganatha KL, Johnson BC, Deng Z, Jaques B, Estrada D (2020) Aerosol jet printed capacitive strain gauge for soft structural materials. Npj Flex Electron 4:32CrossRef
24.
Zurück zum Zitat Galloway KC, Chen Y, Templeton E, Rife B, Godage IS, Barth EJ (2019) Fiber optic shape sensing for soft robotics. Soft Rob 6(5):671–684CrossRef Galloway KC, Chen Y, Templeton E, Rife B, Godage IS, Barth EJ (2019) Fiber optic shape sensing for soft robotics. Soft Rob 6(5):671–684CrossRef
25.
Zurück zum Zitat Youn JH, Mun H, Jang SY, Kyung KU (2021) Highly stretchable-compressible coiled polymer sensor for soft continuum manipulator. Smart Mater Struct 31(1):015043CrossRef Youn JH, Mun H, Jang SY, Kyung KU (2021) Highly stretchable-compressible coiled polymer sensor for soft continuum manipulator. Smart Mater Struct 31(1):015043CrossRef
26.
Zurück zum Zitat Ji Z, Zhang M (2022) Highly sensitive and stretchable piezoelectric strain sensor enabled wearable devices for real-time monitoring of respiratory and heartbeat simultaneously. Nanotechnol Precis Eng 5:013002CrossRef Ji Z, Zhang M (2022) Highly sensitive and stretchable piezoelectric strain sensor enabled wearable devices for real-time monitoring of respiratory and heartbeat simultaneously. Nanotechnol Precis Eng 5:013002CrossRef
27.
Zurück zum Zitat Gariya N, Kumar P, Prasad B, Singh T (2023) Soft pneumatic actuator with an embedded flexible polymeric piezoelectric membrane for sensing bending deformation. Mater Today Commun 35:105910CrossRef Gariya N, Kumar P, Prasad B, Singh T (2023) Soft pneumatic actuator with an embedded flexible polymeric piezoelectric membrane for sensing bending deformation. Mater Today Commun 35:105910CrossRef
28.
Zurück zum Zitat Shapiro Y, Wolf A, Kósa G (2013) Piezoelectric deflection sensor for a bi-bellows actuator. IEEE ASME Trans Mechatron 18(3):1226–1230CrossRef Shapiro Y, Wolf A, Kósa G (2013) Piezoelectric deflection sensor for a bi-bellows actuator. IEEE ASME Trans Mechatron 18(3):1226–1230CrossRef
29.
Zurück zum Zitat Shapiro Y, Kósa G, Wolf A (2014) Shape tracking of planar hyper-flexible beams via embedded PVDF deflection sensors. IEEE ASME Trans Mechatron 19(4):1260–1267CrossRef Shapiro Y, Kósa G, Wolf A (2014) Shape tracking of planar hyper-flexible beams via embedded PVDF deflection sensors. IEEE ASME Trans Mechatron 19(4):1260–1267CrossRef
30.
Zurück zum Zitat Vinogradov A, Holloway F (1999) Electro-mechanical properties of the piezoelectric polymer PVDF. Ferroelectrics 226(1):169–181CrossRef Vinogradov A, Holloway F (1999) Electro-mechanical properties of the piezoelectric polymer PVDF. Ferroelectrics 226(1):169–181CrossRef
31.
Zurück zum Zitat Thuruthel TG, Falotico E, Renda F, Laschi C (2017) Learning dynamic models for open loop predictive control of soft robotic manipulators. Bioinspir Biomim 12(6):066003CrossRef Thuruthel TG, Falotico E, Renda F, Laschi C (2017) Learning dynamic models for open loop predictive control of soft robotic manipulators. Bioinspir Biomim 12(6):066003CrossRef
32.
Zurück zum Zitat Rodrigue H, Wang W, Kim DR, Ahn SH (2017) Curved shape memory alloy-based soft actuators and application to soft gripper. Compos Struct 176:398–406CrossRef Rodrigue H, Wang W, Kim DR, Ahn SH (2017) Curved shape memory alloy-based soft actuators and application to soft gripper. Compos Struct 176:398–406CrossRef
33.
Zurück zum Zitat Jin H, Ouyang Y, Chen H, Kong J, Li W, Zhang S (2022) Modeling and motion control of a soft SMA planar actuator. IEEE ASME Trans Mechatron 27(2):916–927CrossRef Jin H, Ouyang Y, Chen H, Kong J, Li W, Zhang S (2022) Modeling and motion control of a soft SMA planar actuator. IEEE ASME Trans Mechatron 27(2):916–927CrossRef
34.
Zurück zum Zitat He G (2019) Motion planning and control for endoscopic operations of continuum manipulators. Intel Serv Robot 12:159–166CrossRef He G (2019) Motion planning and control for endoscopic operations of continuum manipulators. Intel Serv Robot 12:159–166CrossRef
35.
Zurück zum Zitat Mehrkish A, Janabi-Sharifi F, Goharimanesh M, Norouzi-Ghazbi S (2023) Multiple aspects grasp quality evaluation in underactuated grasp of tendon-driven continuum robots. Intel Serv Robot 16:33–48 Mehrkish A, Janabi-Sharifi F, Goharimanesh M, Norouzi-Ghazbi S (2023) Multiple aspects grasp quality evaluation in underactuated grasp of tendon-driven continuum robots. Intel Serv Robot 16:33–48
36.
Zurück zum Zitat Abdarrhim MA, Abdussalam MR (2021) Euler–Bernoulli and Timoshenko Beam theories analytical and numerical comprehensive revision. Eur J Eng Technol Res 6(7):20–32CrossRef Abdarrhim MA, Abdussalam MR (2021) Euler–Bernoulli and Timoshenko Beam theories analytical and numerical comprehensive revision. Eur J Eng Technol Res 6(7):20–32CrossRef
37.
Zurück zum Zitat Jessica LS, Nicholas AV, Krysten EK, Benjamin L, Martin LT, Phillip AS, Karen S, Teresa ACK (2015) Use of silicone materials to simulate tissue biomechanics as related to deep tissue injury. Adv Skin Wound Care 28(2):59–68CrossRef Jessica LS, Nicholas AV, Krysten EK, Benjamin L, Martin LT, Phillip AS, Karen S, Teresa ACK (2015) Use of silicone materials to simulate tissue biomechanics as related to deep tissue injury. Adv Skin Wound Care 28(2):59–68CrossRef
38.
Zurück zum Zitat Cowper GR (1966) The shear coefficient in Timoshenko’s beam theory. J Appl Mech 33(2):335–340CrossRef Cowper GR (1966) The shear coefficient in Timoshenko’s beam theory. J Appl Mech 33(2):335–340CrossRef
39.
Zurück zum Zitat Chen WR, Chang H (2017) Closed-form solutions for free vibration frequencies of functionally graded Euler–Bernoulli beams. Mech Compos Mater 53:79–98CrossRef Chen WR, Chang H (2017) Closed-form solutions for free vibration frequencies of functionally graded Euler–Bernoulli beams. Mech Compos Mater 53:79–98CrossRef
40.
Zurück zum Zitat Chesne S, Pezerat C (2011) Distributed piezoelectric sensors for boundary force measurements in Euler–Bernoulli beams. Smart Mater Struct 20(7):075009CrossRef Chesne S, Pezerat C (2011) Distributed piezoelectric sensors for boundary force measurements in Euler–Bernoulli beams. Smart Mater Struct 20(7):075009CrossRef
41.
Zurück zum Zitat Marechal L, Balland P, Lindenroth L, Petrou F, Kontovounisios C, Bello F (2021) Toward a common framework and database of materials for soft robotics. Soft Rob 8(3):284–297CrossRef Marechal L, Balland P, Lindenroth L, Petrou F, Kontovounisios C, Bello F (2021) Toward a common framework and database of materials for soft robotics. Soft Rob 8(3):284–297CrossRef
42.
Zurück zum Zitat Lee CK, Moon FC (1989) Laminated piezopolymer plates for torsion and bending sensors and actuators. J Acoust Soc Am 85(6):2432–2439CrossRef Lee CK, Moon FC (1989) Laminated piezopolymer plates for torsion and bending sensors and actuators. J Acoust Soc Am 85(6):2432–2439CrossRef
43.
Zurück zum Zitat Kim H, Lim M, Cha Y (2019) Cross-shaped piezoelectric beam for torsion sensing. Smart Mater Struct 29(1):015023CrossRef Kim H, Lim M, Cha Y (2019) Cross-shaped piezoelectric beam for torsion sensing. Smart Mater Struct 29(1):015023CrossRef
44.
Zurück zum Zitat Cha Y, You H (2019) Parameter study on piezoelectric length to harvesting power in torsional loads. IEEE ASME Trans Mechatron 24(3):1220–1227CrossRef Cha Y, You H (2019) Parameter study on piezoelectric length to harvesting power in torsional loads. IEEE ASME Trans Mechatron 24(3):1220–1227CrossRef
45.
Zurück zum Zitat Caliò R, Rongala UB, Camboni D, Milazzo M, Stefanini C, De Petris G, Oddo CM (2014) Piezoelectric energy harvesting solutions. Sensors 14(3):4755–4790CrossRef Caliò R, Rongala UB, Camboni D, Milazzo M, Stefanini C, De Petris G, Oddo CM (2014) Piezoelectric energy harvesting solutions. Sensors 14(3):4755–4790CrossRef
46.
Zurück zum Zitat Howells CA (2009) Piezoelectric energy harvesting. Energy Convers Manag 50:1847–1850CrossRef Howells CA (2009) Piezoelectric energy harvesting. Energy Convers Manag 50:1847–1850CrossRef
47.
Zurück zum Zitat Cha Y (2017) Energy harvesting using flexible piezoelectric materials from human walking motion: theoretical analysis. J Intell Mater Syst Struct 28(20):3006–3015CrossRef Cha Y (2017) Energy harvesting using flexible piezoelectric materials from human walking motion: theoretical analysis. J Intell Mater Syst Struct 28(20):3006–3015CrossRef
48.
Zurück zum Zitat Erturk A, Tarazaga PA, Farmer JR, Inman DJ (2009) Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams. J Vib Acoust 131(1):011010 Erturk A, Tarazaga PA, Farmer JR, Inman DJ (2009) Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams. J Vib Acoust 131(1):011010
49.
Zurück zum Zitat Kipnis N (2009) A law of physics in the classroom: the case of Ohm’s law. Sci Educ 18:349–382 Kipnis N (2009) A law of physics in the classroom: the case of Ohm’s law. Sci Educ 18:349–382
50.
Zurück zum Zitat Cha Y, Seo J, Kim JS, Park JM (2017) Human-computer interface glove using flexible piezoelectric sensors. Smart Mater Struct 26(5):057002CrossRef Cha Y, Seo J, Kim JS, Park JM (2017) Human-computer interface glove using flexible piezoelectric sensors. Smart Mater Struct 26(5):057002CrossRef
51.
Zurück zum Zitat Cha Y, Hong J, Lee J, Park JM, Kim K (2016) Flexible piezoelectric energy harvesting from mouse click motions. Sensors 16(7):1045CrossRef Cha Y, Hong J, Lee J, Park JM, Kim K (2016) Flexible piezoelectric energy harvesting from mouse click motions. Sensors 16(7):1045CrossRef
52.
Zurück zum Zitat Li W, Wang WT, Sun WH, Wang WY, Zhu NH (2014) Generation of triangular waveforms based on a microwave photonic filter with negative coefficient. Opt Express 22(12):14993–15001CrossRef Li W, Wang WT, Sun WH, Wang WY, Zhu NH (2014) Generation of triangular waveforms based on a microwave photonic filter with negative coefficient. Opt Express 22(12):14993–15001CrossRef
53.
Zurück zum Zitat Kim H, Lee K, Jo G, Kim JS, Lim MT, Cha Y (2021) Tendon-inspired piezoelectric sensor for biometric application. IEEE ASME Trans Mechatron 26(5):2538–2547CrossRef Kim H, Lee K, Jo G, Kim JS, Lim MT, Cha Y (2021) Tendon-inspired piezoelectric sensor for biometric application. IEEE ASME Trans Mechatron 26(5):2538–2547CrossRef
54.
Zurück zum Zitat Kim B, Lee SB, Lee J, Cho S, Park H, Yeom S, Park SH (2012) A comparison among Neo–Hookean model, Mooney–Rivlin model, and Ogden model for chloroprene rubber. Int J Precis Eng Manuf 13(5):759–764CrossRef Kim B, Lee SB, Lee J, Cho S, Park H, Yeom S, Park SH (2012) A comparison among Neo–Hookean model, Mooney–Rivlin model, and Ogden model for chloroprene rubber. Int J Precis Eng Manuf 13(5):759–764CrossRef
55.
Zurück zum Zitat Eshaghi M, Ghasemi M, Khorshidi K (2021) Design, manufacturing and applications of small-scale magnetic soft robots. Extreme Mech Lett 44:101268CrossRef Eshaghi M, Ghasemi M, Khorshidi K (2021) Design, manufacturing and applications of small-scale magnetic soft robots. Extreme Mech Lett 44:101268CrossRef
56.
Zurück zum Zitat Yu M, Cheng X, Peng S, Cao Y, Lu Y, Li B, Feng X, Zhang Y, Wang H, Jiao Z, Wang P, Zhao L (2022) A self-sensing soft pneumatic actuator with closed-Loop control for haptic feedback wearable devices. Mater Des 223:111149CrossRef Yu M, Cheng X, Peng S, Cao Y, Lu Y, Li B, Feng X, Zhang Y, Wang H, Jiao Z, Wang P, Zhao L (2022) A self-sensing soft pneumatic actuator with closed-Loop control for haptic feedback wearable devices. Mater Des 223:111149CrossRef
57.
Zurück zum Zitat Gabardi M, Solazzi M, Leonardis D, Frisoli A (2016) A new wearable fingertip haptic interface for the rendering of virtual shapes and surface features. In: 2016 IEEE haptics symposium (HAPTICS), pp 140–146 Gabardi M, Solazzi M, Leonardis D, Frisoli A (2016) A new wearable fingertip haptic interface for the rendering of virtual shapes and surface features. In: 2016 IEEE haptics symposium (HAPTICS), pp 140–146
58.
Zurück zum Zitat Kim SJ, Choi JY, Moon HP, Choi HR, Koo JC (2016) Development of polymer slip tactile sensor using relative displacement of separation layer. J Korea Robot Soc 11(2):100–107CrossRef Kim SJ, Choi JY, Moon HP, Choi HR, Koo JC (2016) Development of polymer slip tactile sensor using relative displacement of separation layer. J Korea Robot Soc 11(2):100–107CrossRef
Metadaten
Titel
Detecting deformation of a soft cylindrical structure using piezoelectric sensors
verfasst von
Jiyong Min
Hojoon Kim
Youngsu Cha
Publikationsdatum
19.09.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Intelligent Service Robotics / Ausgabe 1/2024
Print ISSN: 1861-2776
Elektronische ISSN: 1861-2784
DOI
https://doi.org/10.1007/s11370-023-00484-4

Weitere Artikel der Ausgabe 1/2024

Intelligent Service Robotics 1/2024 Zur Ausgabe

Neuer Inhalt