Skip to main content
Erschienen in: Journal of Electronic Materials 6/2021

22.03.2021 | Original Research Article

Detection of Authentication of Milk by Nanostructure Conducting Polypyrrole-ZnO

verfasst von: Sajad Pirsa, Şeref Tağı, Mohammad Rezaei

Erschienen in: Journal of Electronic Materials | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we developed a micro-scale smart gas sensor based on polypyrrole-ZnO (PPy-ZnO) fiber for the detection of some volatile compounds that were added as adulterants in milk samples. The PPy-ZnO nanocomposite was synthesized via a chemical polymerization method on polyester textile fiber, in which ZnO nanoparticles as dopant and FeCl3 as an oxidizing agent were used in nanocomposite polymerization. The structure and morphology of PPy-ZnO nanocomposite (30-100 nm) was studied by scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The designed PPy-ZnO fiber was used as a micro-scale gas sensor for rapid and simultaneous detection of adulterants added to milk samples. Adulterants in this study included NaClO, H2CO3, citric acid and NaHCO3.  Central composite design (CCD) was used to study the effects of NaClO, H2CO3, citric acid and NaHCO3 concentration on the sensor responses to determine the adulteration in milk samples. Milk samples with different concentrations of adulterants (0-10 parts per thousand (g/L)) were prepared, and their volatile compounds, separated by the headspace method, were injected into the sensor. The PPy-ZnO sensor responses to volatile compounds of milk samples were analyzed by response surface methodology (RSM). Results showed that NaClO, H2CO3, citric acid and NaHCO3concentration affected the PPy-ZnO sensor responses, and there was a good linear relationship between the concentration of the adulterants and the sensor responses. The presented micro-scale smart gas sensor could detect adulteration by these chemicals in milk. The detection procedure was simple and rapid, and could be completed in 3 min following a 4 min sample preparation time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat O. Adolfsson, S.N. Meydani, and R.M. Russell, Am. J. Clin. Nutr. 80, 245 (2004).CrossRef O. Adolfsson, S.N. Meydani, and R.M. Russell, Am. J. Clin. Nutr. 80, 245 (2004).CrossRef
2.
Zurück zum Zitat D. Feskanich, W.C. Willett, M.J. Stampfer, and G.A. Colditz, Am. J. Publ. Health 87, 992 (1997).CrossRef D. Feskanich, W.C. Willett, M.J. Stampfer, and G.A. Colditz, Am. J. Publ. Health 87, 992 (1997).CrossRef
3.
Zurück zum Zitat J.E. Bisanz, M.K. Enos, G. PrayGod, S. Seney, J.M. Macklaim, S. Chilton, D. Willner, R. Knight, C. Fusch, G. Fusch, and G.B. Gloor, Appl. Environ. Microbiol. 81, 4965 (2015).CrossRef J.E. Bisanz, M.K. Enos, G. PrayGod, S. Seney, J.M. Macklaim, S. Chilton, D. Willner, R. Knight, C. Fusch, G. Fusch, and G.B. Gloor, Appl. Environ. Microbiol. 81, 4965 (2015).CrossRef
5.
Zurück zum Zitat J.S. Garcia, G.B. Sanvido, S.A. Saraiva, J.J. Zacca, R.G. Cosso, and M.N. Eberlin, Food Chem. 131, 722 (2012).CrossRef J.S. Garcia, G.B. Sanvido, S.A. Saraiva, J.J. Zacca, R.G. Cosso, and M.N. Eberlin, Food Chem. 131, 722 (2012).CrossRef
6.
Zurück zum Zitat D.R. Ghodeker, A.T. Dudani, and B. Ranganathan, J. Milk Food Technol. 37, 119 (1974).CrossRef D.R. Ghodeker, A.T. Dudani, and B. Ranganathan, J. Milk Food Technol. 37, 119 (1974).CrossRef
7.
Zurück zum Zitat J. Bania, M. Ugorski, A. Polanowski, and E. Adamczyk, J. Dairy Res. 68, 333 (2001).CrossRef J. Bania, M. Ugorski, A. Polanowski, and E. Adamczyk, J. Dairy Res. 68, 333 (2001).CrossRef
8.
Zurück zum Zitat L.A. Dias, A.M. Peres, A.C. Veloso, F.S. Reis, M. Vilas-Boas, and A.A. Machado, Sens. Actuators B: Chem. 136, 209 (2009).CrossRef L.A. Dias, A.M. Peres, A.C. Veloso, F.S. Reis, M. Vilas-Boas, and A.A. Machado, Sens. Actuators B: Chem. 136, 209 (2009).CrossRef
9.
Zurück zum Zitat A. Afzal, M.S. Mahmood, I. Hussain, and M. Akhtar, Pak. J. Nutr. 10, 1195 (2011).CrossRef A. Afzal, M.S. Mahmood, I. Hussain, and M. Akhtar, Pak. J. Nutr. 10, 1195 (2011).CrossRef
11.
Zurück zum Zitat H. Singuluri, and M. Sukumaran, J. Chromatogr. Sep. Tech. 5, 212 (2014).CrossRef H. Singuluri, and M. Sukumaran, J. Chromatogr. Sep. Tech. 5, 212 (2014).CrossRef
12.
13.
Zurück zum Zitat T.L. Fodey, C.S. Thompson, I.M. Traynor, S.A. Haughey, D.G. Kennedy, and S.R. Crooks, Anal. Chem. 83, 5012 (2016).CrossRef T.L. Fodey, C.S. Thompson, I.M. Traynor, S.A. Haughey, D.G. Kennedy, and S.R. Crooks, Anal. Chem. 83, 5012 (2016).CrossRef
14.
Zurück zum Zitat E.M.T.D. Souza, S.F. Arruda, P.O. Brandão, and E.M.D.A. Siqueira, Cienc. Technol. Aliment. 20, 314 (2000).CrossRef E.M.T.D. Souza, S.F. Arruda, P.O. Brandão, and E.M.D.A. Siqueira, Cienc. Technol. Aliment. 20, 314 (2000).CrossRef
15.
Zurück zum Zitat D.I. Ellis, V.L. Brewster, W.B. Dunn, J.W. Allwood, A.P. Golovanov, and R. Goodacre, Chem. Soc. Rev. 41, 5706 (2012).CrossRef D.I. Ellis, V.L. Brewster, W.B. Dunn, J.W. Allwood, A.P. Golovanov, and R. Goodacre, Chem. Soc. Rev. 41, 5706 (2012).CrossRef
16.
Zurück zum Zitat A. Kim, S.J. Barcelo, R.S. Williams, and Z. Li, Anal. Chem. 84, 9303 (2012).CrossRef A. Kim, S.J. Barcelo, R.S. Williams, and Z. Li, Anal. Chem. 84, 9303 (2012).CrossRef
17.
Zurück zum Zitat B.S. Bector, M. Ram, and O.P. Singhal, Indian Dairy 50, 59 (1998). B.S. Bector, M. Ram, and O.P. Singhal, Indian Dairy 50, 59 (1998).
18.
Zurück zum Zitat M.P. Ntakatsane, X.M. Liu, and P. Zhou, J. Dairy Sci. 96, 2130 (2013).CrossRef M.P. Ntakatsane, X.M. Liu, and P. Zhou, J. Dairy Sci. 96, 2130 (2013).CrossRef
20.
21.
Zurück zum Zitat N. Alizadeh, S. Pirsa, A. Mani-Varnosfaderani, and M.S. Alizadeh, IEEE Sens. J. 15, 4130 (2015).CrossRef N. Alizadeh, S. Pirsa, A. Mani-Varnosfaderani, and M.S. Alizadeh, IEEE Sens. J. 15, 4130 (2015).CrossRef
22.
Zurück zum Zitat N. Alizadeh, A.A. Ataei, and S. Pirsa, J. Iranian Chem. Soc. 12, 1585 (2015).CrossRef N. Alizadeh, A.A. Ataei, and S. Pirsa, J. Iranian Chem. Soc. 12, 1585 (2015).CrossRef
23.
Zurück zum Zitat S. Pirsa, M. Alizadeh, and N. Ghahremannejad, Curr. Anal. Chem. 12, 457 (2016).CrossRef S. Pirsa, M. Alizadeh, and N. Ghahremannejad, Curr. Anal. Chem. 12, 457 (2016).CrossRef
24.
25.
26.
Zurück zum Zitat S. Pirsa, J. O. Sci. Islamic Rep. Iran 24, 209 (2013). S. Pirsa, J. O. Sci. Islamic Rep. Iran 24, 209 (2013).
28.
Zurück zum Zitat M.T. Ahmadi, R. Ismail, S. Anwar, Handbook of Research on Nanoelectronic Sensor Modeling and Applications. IGI Global; 2016 Sep 20. M.T. Ahmadi, R. Ismail, S. Anwar, Handbook of Research on Nanoelectronic Sensor Modeling and Applications. IGI Global; 2016 Sep 20.
29.
Zurück zum Zitat S. Chavoshizadeh, S. Pirsa, and F. Mohtarami, Food Packag. Shelf Life 24, 100501 (2020).CrossRef S. Chavoshizadeh, S. Pirsa, and F. Mohtarami, Food Packag. Shelf Life 24, 100501 (2020).CrossRef
30.
Zurück zum Zitat S. Pirsa, M. Zandi, H. Almasi, and S. Hasanlu, Sens. Lett. 13, 578 (2015).CrossRef S. Pirsa, M. Zandi, H. Almasi, and S. Hasanlu, Sens. Lett. 13, 578 (2015).CrossRef
31.
Zurück zum Zitat B. Mohammadi, S. Pirsa, and M. Alizadeh, Polym. Polym. Compos. 27, 507 (2019). B. Mohammadi, S. Pirsa, and M. Alizadeh, Polym. Polym. Compos. 27, 507 (2019).
32.
Zurück zum Zitat S. Pirsa, Chemiresistive gas sensors based on conducting polymers. In Handbook of Research on Nanoelectronic Sensor Modeling and Applications. IGI Global. 150 (2017). S. Pirsa, Chemiresistive gas sensors based on conducting polymers. In Handbook of Research on Nanoelectronic Sensor Modeling and Applications. IGI Global. 150 (2017).
33.
Zurück zum Zitat S. Pirsa, N. Alizadeh, M. Zandi, H. Almasi, and H. Heidari, Sens. Lett. 12, 1709 (2014).CrossRef S. Pirsa, N. Alizadeh, M. Zandi, H. Almasi, and H. Heidari, Sens. Lett. 12, 1709 (2014).CrossRef
36.
Zurück zum Zitat F. Ghasemi, S. Pirsa, M. Alizadeh, and F. Mohtarami, Sep. Sci. Technol. 53, 117 (2018).CrossRef F. Ghasemi, S. Pirsa, M. Alizadeh, and F. Mohtarami, Sep. Sci. Technol. 53, 117 (2018).CrossRef
Metadaten
Titel
Detection of Authentication of Milk by Nanostructure Conducting Polypyrrole-ZnO
verfasst von
Sajad Pirsa
Şeref Tağı
Mohammad Rezaei
Publikationsdatum
22.03.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 6/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08855-2

Weitere Artikel der Ausgabe 6/2021

Journal of Electronic Materials 6/2021 Zur Ausgabe

Neuer Inhalt