Skip to main content
Erschienen in: Neural Computing and Applications 13/2021

19.11.2020 | Original Article

Detection of threat objects in baggage inspection with X-ray images using deep learning

verfasst von: Daniel Saavedra, Sandipan Banerjee, Domingo Mery

Erschienen in: Neural Computing and Applications | Ausgabe 13/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the field of security, baggage-screening with X-rays is used as nondestructive testing for threat object detection. This is a common protocol when inspecting passenger baggage particularly at airports. Unfortunately, the accuracy of such human inspection is around 80–90%, under optimal operator conditions. For this reason, it is quite necessary to assist human inspectors with the aid of computer vision algorithms. This work proposes a deep learning-based methodology designed to detect threat objects in (single spectrum) X-ray baggage scan images. For this purpose, our proposed framework simulates a large number of X-ray images, using a combination of PGGAN (Karras et al. in International conference on learning representations, 2018. https://​openreview.​net/​forum?​id=​Hk99zCeAb) and superimposition (Mery and Katsaggelos in 2017 IEEE conference on computer vision and pattern recognition workshops (CVPRW), 2017.https://​doi.​org/​10.​1109/​CVPRW.​2017.​37) strategies, that are used to train state-of-the-art detection models such as YOLO (Redmon et al. in You only look once: unified, real-time object detection. CoRR abs/1506.02640, 2015. http://​arxiv.​org/​ abs/​1506.​02640), SSD (Liu et al. in SSD: single shot multibox detector. CoRR abs/1512.02325, 2015. http://​arxiv.​ org/​abs/​1512.​02325) and RetinaNet (Lin et al. in Focal loss for dense object detection. CoRR abs/1708.02002, 2017. http://​arxiv.​org/​abs/​1708.​02002). Our method has been tested on real X-ray images in the detection of four categories of threat objects: guns, knives, razor blades and shuriken (ninja stars). In our experiments, YOLOv3 (Redmon and Farhadi in Yolov3: An incremental improvement. CoRR abs/1804.02767, 2018. http://​arxiv.​org/​abs/​1804.​02767) obtained the best mean average precision (mAP) with 96.3% for guns, 76.2% for knives, 86.9% for razor blades and 93.7% for shuriken, while the average mAP for all threat objects was 80.0%. We believe the effectiveness of our method in the detection of threat objects makes its use in checkpoints possible. Moreover, our methodology is scalable and can be easily extended to detect other categories automatically.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Razor blades and shuriken are not present in Subset 2.
 
2
Code and datasets can be downloaded from https://​github.​com/​dlsaavedra/​Detector_​GDXray.
 
Literatur
2.
Zurück zum Zitat Alcorn MA, Li Q, Gong Z, Wang C, Mai L, Ku WS, Nguyen A (2019) Strike (with) a pose: neural networks are easily fooled by strange poses of familiar objects. In: Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4845–4854) Alcorn MA, Li Q, Gong Z, Wang C, Mai L, Ku WS, Nguyen A (2019) Strike (with) a pose: neural networks are easily fooled by strange poses of familiar objects. In: Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4845–4854)
6.
Zurück zum Zitat Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. In: Leonardis A, Bischof H, Pinz A (eds) Computer vision—ECCV 2006. Springer, Berlin, pp 404–417CrossRef Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. In: Leonardis A, Bischof H, Pinz A (eds) Computer vision—ECCV 2006. Springer, Berlin, pp 404–417CrossRef
7.
Zurück zum Zitat Bolfing A, Halbherr T, Schwaninger A (2008) How image based factors and human factors contribute to threat detection performance in X-ray aviation security screening. In: Holzinger A (ed) HCI and usability for education and work. Springer, Berlin, pp 419–438CrossRef Bolfing A, Halbherr T, Schwaninger A (2008) How image based factors and human factors contribute to threat detection performance in X-ray aviation security screening. In: Holzinger A (ed) HCI and usability for education and work. Springer, Berlin, pp 419–438CrossRef
8.
Zurück zum Zitat Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical image database. In: CVPR09 Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical image database. In: CVPR09
13.
Zurück zum Zitat Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial networks. arXiv e-prints arXiv:1406.2661 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial networks. arXiv e-prints arXiv:​1406.​2661
14.
Zurück zum Zitat Goodfellow I, Bengio Y, Courville A (2016) Deep learning, vol 1. MIT Press, Cambridge, p 2MATH Goodfellow I, Bengio Y, Courville A (2016) Deep learning, vol 1. MIT Press, Cambridge, p 2MATH
15.
Zurück zum Zitat Harris C, Stephens M (1988) A combined corner and edge detector. In: In Proc. of fourth Alvey vision conference, pp. 147–151 Harris C, Stephens M (1988) A combined corner and edge detector. In: In Proc. of fourth Alvey vision conference, pp. 147–151
16.
Zurück zum Zitat Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, CambridgeMATH Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, CambridgeMATH
18.
Zurück zum Zitat Kanazawa A (2014) Locally scale-invariant convolutional neural networks. In: NeurIPS workshops Kanazawa A (2014) Locally scale-invariant convolutional neural networks. In: NeurIPS workshops
20.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems, vol 25. Curran Associates Inc., New York, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems, vol 25. Curran Associates Inc., New York, pp 1097–1105
24.
27.
Zurück zum Zitat McBee MP, Awan OA, Colucci AT, Ghobadi CW, Kadom N, Kansagra AP, Tridandapani S, Auffermann WF (2018) Deep learning in radiology. Acad. Radiol 25(11):1472–1480CrossRef McBee MP, Awan OA, Colucci AT, Ghobadi CW, Kadom N, Kansagra AP, Tridandapani S, Auffermann WF (2018) Deep learning in radiology. Acad. Radiol 25(11):1472–1480CrossRef
28.
30.
Zurück zum Zitat Mery D, Katsaggelos AK (2017) A logarithmic X-ray imaging model for baggage inspection: Simulation and object detection. In: 2017 IEEE conference on computer vision and pattern recognition workshops (CVPRW), pp. 251–259 . 10.1109/CVPRW.2017.37 Mery D, Katsaggelos AK (2017) A logarithmic X-ray imaging model for baggage inspection: Simulation and object detection. In: 2017 IEEE conference on computer vision and pattern recognition workshops (CVPRW), pp. 251–259 . 10.1109/CVPRW.2017.37
32.
Zurück zum Zitat Mery D, Riffo V, Zuccar I, Pieringer C (2013) Automated X-ray object recognition using an efficient search algorithm in multiple views. In: 2013 IEEE conference on computer vision and pattern recognition workshops, pp. 368–374 . 10.1109/CVPRW.2013.62 Mery D, Riffo V, Zuccar I, Pieringer C (2013) Automated X-ray object recognition using an efficient search algorithm in multiple views. In: 2013 IEEE conference on computer vision and pattern recognition workshops, pp. 368–374 . 10.1109/CVPRW.2013.62
34.
35.
Zurück zum Zitat Michel S, Koller SM, de Ruiter JC, Moerland R, Hogervorst M, Schwaninger A (2007) Computer-based training increases efficiency in X-ray image interpretation by aviation security screeners. In: 2007 41st Annual IEEE international Carnahan conference on security technology, pp. 201–206. 10.1109/CCST.2007.4373490 Michel S, Koller SM, de Ruiter JC, Moerland R, Hogervorst M, Schwaninger A (2007) Computer-based training increases efficiency in X-ray image interpretation by aviation security screeners. In: 2007 41st Annual IEEE international Carnahan conference on security technology, pp. 201–206. 10.1109/CCST.2007.4373490
36.
Zurück zum Zitat Mikhaylichenko A, Demyanenko Y, Grushko E (2016) Automatic detection of bone contours in X-ray images. In: AIST (Supplement), pp. 212–223 Mikhaylichenko A, Demyanenko Y, Grushko E (2016) Automatic detection of bone contours in X-ray images. In: AIST (Supplement), pp. 212–223
37.
Zurück zum Zitat Mikolajczyk A, Grochowski M (2018) Data augmentation for improving deep learning in image classification problem. In 2018 International interdisciplinary PhD workshop (IIPhDW) (pp. 117-122). IEEE Mikolajczyk A, Grochowski M (2018) Data augmentation for improving deep learning in image classification problem. In 2018 International interdisciplinary PhD workshop (IIPhDW) (pp. 117-122). IEEE
38.
Zurück zum Zitat Nercessian S, Panetta K, Agaian S (2008) Automatic detection of potential threat objects in X-ray luggage scan images. In: 2008 IEEE conference on technologies for Homeland Security, pp. 504–509 . 10.1109/THS.2008.4534504 Nercessian S, Panetta K, Agaian S (2008) Automatic detection of potential threat objects in X-ray luggage scan images. In: 2008 IEEE conference on technologies for Homeland Security, pp. 504–509 . 10.1109/THS.2008.4534504
39.
Zurück zum Zitat Perez L, Wang J (2017) The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621 Perez L, Wang J (2017) The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:​1712.​04621
40.
Zurück zum Zitat Radford A, Metz L, Chintala S (2016) Unsupervised representation learning with deep convolutional generative adversarial networks. In: International conference on learning representations (ICLR) Radford A, Metz L, Chintala S (2016) Unsupervised representation learning with deep convolutional generative adversarial networks. In: International conference on learning representations (ICLR)
46.
Zurück zum Zitat RichardWebster B, Anthony SE, Scheirer WJ (2018) Psyphy: a psychophysics driven evaluation framework for visual recognition. IEEE Trans Pattern Anal Mach Intell 41(9):2280–2286CrossRef RichardWebster B, Anthony SE, Scheirer WJ (2018) Psyphy: a psychophysics driven evaluation framework for visual recognition. IEEE Trans Pattern Anal Mach Intell 41(9):2280–2286CrossRef
49.
Zurück zum Zitat Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6(1):60CrossRef Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6(1):60CrossRef
51.
Zurück zum Zitat Steitz JO, Saeedan F, Roth S (2018) Multi-view X-ray R-CNN. In: Proceedings of the German conference on pattern recognition (GCPR), LNCS 11269, pp. 153–158 Steitz JO, Saeedan F, Roth S (2018) Multi-view X-ray R-CNN. In: Proceedings of the German conference on pattern recognition (GCPR), LNCS 11269, pp. 153–158
52.
Zurück zum Zitat Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9
53.
Zurück zum Zitat Szeliski R (2010) Computer vision: algorithms and applications. Springer, BerlinMATH Szeliski R (2010) Computer vision: algorithms and applications. Springer, BerlinMATH
54.
Zurück zum Zitat Turcsany D, Mouton A, Breckon TP (2013) Improving feature-based object recognition for X-ray baggage security screening using primed visualwords. In: 2013 IEEE International conference on industrial technology (ICIT), pp. 1140–1145. IEEE Turcsany D, Mouton A, Breckon TP (2013) Improving feature-based object recognition for X-ray baggage security screening using primed visualwords. In: 2013 IEEE International conference on industrial technology (ICIT), pp. 1140–1145. IEEE
55.
Zurück zum Zitat Wu N, Phang J, Park J, Shen Y, Huang Z, Zorin M, Jastrzebski S, Fevry T, Katsnelson J, Kim E, Wolfson S, Parikh U, Gaddam S, Lin LLY, Ho K, Weinstein JD, Reig B, Gao Y, Toth H, Pysarenko K, Lewin A, Lee J, Airola, K, Mema E, Chung S, Hwang E, Samreen N, Kim SG, Heacock L, Moy L, Cho K, Geras KJ (2019) Deep neural networks improve radiologists’ performance in breast cancer screening. arXiv preprint arXiv:1903.08297 Wu N, Phang J, Park J, Shen Y, Huang Z, Zorin M, Jastrzebski S, Fevry T, Katsnelson J, Kim E, Wolfson S, Parikh U, Gaddam S, Lin LLY, Ho K, Weinstein JD, Reig B, Gao Y, Toth H, Pysarenko K, Lewin A, Lee J, Airola, K, Mema E, Chung S, Hwang E, Samreen N, Kim SG, Heacock L, Moy L, Cho K, Geras KJ (2019) Deep neural networks improve radiologists’ performance in breast cancer screening. arXiv preprint arXiv:​1903.​08297
57.
Zurück zum Zitat Zentai G (2008) X-ray imaging for homeland security. In: 2008 IEEE international workshop on imaging systems and techniques, pp. 1–6 . 10.1109/IST.2008.4659929 Zentai G (2008) X-ray imaging for homeland security. In: 2008 IEEE international workshop on imaging systems and techniques, pp. 1–6 . 10.1109/IST.2008.4659929
59.
Zurück zum Zitat Zou L, Yusuke T, Hitoshi I (2020) Dangerous objects detection of X-ray images using convolution neural network. In: Yang CN, Peng SL, Jain LC (eds) Security with intelligent computing and big-data services. Springer, Cham, pp 714–728CrossRef Zou L, Yusuke T, Hitoshi I (2020) Dangerous objects detection of X-ray images using convolution neural network. In: Yang CN, Peng SL, Jain LC (eds) Security with intelligent computing and big-data services. Springer, Cham, pp 714–728CrossRef
Metadaten
Titel
Detection of threat objects in baggage inspection with X-ray images using deep learning
verfasst von
Daniel Saavedra
Sandipan Banerjee
Domingo Mery
Publikationsdatum
19.11.2020
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 13/2021
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05521-2

Weitere Artikel der Ausgabe 13/2021

Neural Computing and Applications 13/2021 Zur Ausgabe

Premium Partner