Skip to main content
Erschienen in: Journal of Iron and Steel Research International 11/2022

24.05.2022 | Original Paper

Developing laterite nickel ore leaching residue as sustainable blast furnace charge

verfasst von: Qing-yu Tang, Kai-jia Wu, Min Gan, Xiao-hui Fan, Zeng-qing Sun, Hao Lv, Guo-jing Wong

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 11/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A kind of leaching residue generated during high pressure acid leaching of laterite nickel ore is creatively prepared as blast furnace charge for ironmaking. Results show that the briquettes with uniform shape, compressive strength higher than 72.3 N/pellet, and cracking temperature over 400 °C can be obtained by the non-binder briquetting with water content of 12.2 wt.% and pressure of 30 MPa. After preheating at 975 °C for 12 min and roasting at 1225 °C for 15 min, the strength of the roasted briquettes can reach 2815 N/pellet, and the iron grade is 59.27 wt.%. And the sulfur content can be simultaneously reduced to 0.067 wt.%. The obtained briquettes achieve adequate reducibility index, reduction degradation index, reduction swelling index, softening and melting temperatures, which are suitable for blast furnace ironmaking. The results show that this method cannot only effectively treat the leaching residue to reduce the risk of environmental pollution, but also realize the utilization of leaching residue.
Literatur
[1]
Zurück zum Zitat P. Zhang, Q. Guo, G. Wei, L. Meng, L. Han, J. Qu, T. Qi, Hydrometallurgy 157 (2015) 149–158.CrossRef P. Zhang, Q. Guo, G. Wei, L. Meng, L. Han, J. Qu, T. Qi, Hydrometallurgy 157 (2015) 149–158.CrossRef
[2]
Zurück zum Zitat A.E.M. Warner, C.M. Díaz, A.D. Dalvi, P.J. Mackey, A.V. Tarasov, JOM 58 (2006) 11–20.CrossRef A.E.M. Warner, C.M. Díaz, A.D. Dalvi, P.J. Mackey, A.V. Tarasov, JOM 58 (2006) 11–20.CrossRef
[3]
Zurück zum Zitat G. Senanayake, J. Childs, B.D. Akerstrom, D. Pugaev, Hydrometallurgy 110 (2011) 13–32.CrossRef G. Senanayake, J. Childs, B.D. Akerstrom, D. Pugaev, Hydrometallurgy 110 (2011) 13–32.CrossRef
[5]
Zurück zum Zitat Q. Guo, J. Qu, T. Qi, G. Wei, B. Han, Miner. Eng. 24 (2011) 825–832.CrossRef Q. Guo, J. Qu, T. Qi, G. Wei, B. Han, Miner. Eng. 24 (2011) 825–832.CrossRef
[6]
[7]
Zurück zum Zitat C.A. Ang, F. Zhang, G. Azimi, ACS Sustainable Chem. Eng. 5 (2017) 8416–8423.CrossRef C.A. Ang, F. Zhang, G. Azimi, ACS Sustainable Chem. Eng. 5 (2017) 8416–8423.CrossRef
[8]
Zurück zum Zitat K. Liu, Q. Chen, H. Hu, Z. Yin, B. Wu, Hydrometallurgy 104 (2010) 32–38.CrossRef K. Liu, Q. Chen, H. Hu, Z. Yin, B. Wu, Hydrometallurgy 104 (2010) 32–38.CrossRef
[9]
Zurück zum Zitat S. Çetintaş, U. Yildiz, D. Bingöl, J. Clean. Prod. 199 (2018) 616–632.CrossRef S. Çetintaş, U. Yildiz, D. Bingöl, J. Clean. Prod. 199 (2018) 616–632.CrossRef
[10]
Zurück zum Zitat D. Zhu, L. Pan, Z. Guo, J. Pan, F. Zhang, Adv. Powder Technol. 30 (2019) 451–460.CrossRef D. Zhu, L. Pan, Z. Guo, J. Pan, F. Zhang, Adv. Powder Technol. 30 (2019) 451–460.CrossRef
[11]
[12]
Zurück zum Zitat F. Ma, Z. Yu, Y. Wu, X. Zhang, C. Lv, J. Qu, Hydrometallurgy 195 (2020) 105370.CrossRef F. Ma, Z. Yu, Y. Wu, X. Zhang, C. Lv, J. Qu, Hydrometallurgy 195 (2020) 105370.CrossRef
[13]
[14]
Zurück zum Zitat T. Gultom, A. Sianipar, IOP Conf. Ser.: Earth Environ. Sci. 413 (2020) 012015. T. Gultom, A. Sianipar, IOP Conf. Ser.: Earth Environ. Sci. 413 (2020) 012015.
[15]
Zurück zum Zitat C.W. Luo, T.J. Zhu, S.Q. Luo, J. Li, J.F. Zhang, X.Y. Zhang, Yunnan Metallurgy 43 (2014) No. 5, 43–46. C.W. Luo, T.J. Zhu, S.Q. Luo, J. Li, J.F. Zhang, X.Y. Zhang, Yunnan Metallurgy 43 (2014) No. 5, 43–46.
[16]
Zurück zum Zitat M. Lei, B. Ma, Y. Chen, W. Liu, B. Liu, D. Lv, W. Zhang, C. Wang, ACS Sustainable Chem. Eng. 8 (2020) 3959–3968.CrossRef M. Lei, B. Ma, Y. Chen, W. Liu, B. Liu, D. Lv, W. Zhang, C. Wang, ACS Sustainable Chem. Eng. 8 (2020) 3959–3968.CrossRef
[17]
Zurück zum Zitat E. Stamboliadis, G. Alevizos, J. Zafiratos, Miner. Eng. 17 (2004) 245–252.CrossRef E. Stamboliadis, G. Alevizos, J. Zafiratos, Miner. Eng. 17 (2004) 245–252.CrossRef
[18]
Zurück zum Zitat B.I. Whittington, D. Muir, Miner. Process. Extr. Metall. Rev. 21 (2000) 527–599.CrossRef B.I. Whittington, D. Muir, Miner. Process. Extr. Metall. Rev. 21 (2000) 527–599.CrossRef
[19]
Zurück zum Zitat W.Y. Huang, R.H. Zhu, F. He, D. Li, Y. Zhu, Y.M. Zhang, Chem. Eng. J. 228 (2013) 679–687.CrossRef W.Y. Huang, R.H. Zhu, F. He, D. Li, Y. Zhu, Y.M. Zhang, Chem. Eng. J. 228 (2013) 679–687.CrossRef
[20]
Zurück zum Zitat S.P.E. Forsmo, A.J. Apelqvist, B.M.T. Björkman, P.O. Samskog, Powder Technol. 169 (2006) 147–158.CrossRef S.P.E. Forsmo, A.J. Apelqvist, B.M.T. Björkman, P.O. Samskog, Powder Technol. 169 (2006) 147–158.CrossRef
[21]
Zurück zum Zitat J.J. Carlson, S.K. Kawatra, Miner. Process. Extr. Metall. Rev. 34 (2013) 269–303.CrossRef J.J. Carlson, S.K. Kawatra, Miner. Process. Extr. Metall. Rev. 34 (2013) 269–303.CrossRef
[22]
Zurück zum Zitat M. Gan, X.H. Fan, Z.H. Zhang, X.J. Zhou, Y.Q. Wang, H.J. Yu, J. Iron Steel Res. Int. 16 (2009) No. S2-1, 327–331. M. Gan, X.H. Fan, Z.H. Zhang, X.J. Zhou, Y.Q. Wang, H.J. Yu, J. Iron Steel Res. Int. 16 (2009) No. S2-1, 327–331.
[23]
Zurück zum Zitat S.P.E. Forsmo, S.E. Forsmo, P.O. Samskog, B.M.T. Björkman, Powder Technol. 183 (2008) 247–259.CrossRef S.P.E. Forsmo, S.E. Forsmo, P.O. Samskog, B.M.T. Björkman, Powder Technol. 183 (2008) 247–259.CrossRef
[24]
Zurück zum Zitat I.U. Bhuiyan, J. Mouzon, B. Schröppel, A. Kaech, I. Dobryden, S.P.E. Forsmo, J. Hedlund, Microsc. Microanal. 20 (2014) 33–41.CrossRef I.U. Bhuiyan, J. Mouzon, B. Schröppel, A. Kaech, I. Dobryden, S.P.E. Forsmo, J. Hedlund, Microsc. Microanal. 20 (2014) 33–41.CrossRef
[25]
Zurück zum Zitat Y.G. Zhou, Modern Mining 36 (2020) No. 6, 224–226+230. Y.G. Zhou, Modern Mining 36 (2020) No. 6, 224–226+230.
[26]
Zurück zum Zitat S. Dwarapudi, T.K. Ghosh, A. Shankar, V. Tathavadkar, D. Bhattacharjee, R. Venugopal, Int. J. Miner. Process. 96 (2010) 45–53.CrossRef S. Dwarapudi, T.K. Ghosh, A. Shankar, V. Tathavadkar, D. Bhattacharjee, R. Venugopal, Int. J. Miner. Process. 96 (2010) 45–53.CrossRef
[27]
[29]
Zurück zum Zitat O.A. Mohamed, M.E.H. Shalabi, N.A. El-Hussiny, M.H. Khedr, F. Mostafa, Powder Technol. 130 (2003) 277–282.CrossRef O.A. Mohamed, M.E.H. Shalabi, N.A. El-Hussiny, M.H. Khedr, F. Mostafa, Powder Technol. 130 (2003) 277–282.CrossRef
[30]
Zurück zum Zitat D.Q. Zhu, Z.Y. Ruan, T.J. Chun, J. Pan, J. Iron Steel Res. Int. 20 (2013) No. 10, 32–38.CrossRef D.Q. Zhu, Z.Y. Ruan, T.J. Chun, J. Pan, J. Iron Steel Res. Int. 20 (2013) No. 10, 32–38.CrossRef
Metadaten
Titel
Developing laterite nickel ore leaching residue as sustainable blast furnace charge
verfasst von
Qing-yu Tang
Kai-jia Wu
Min Gan
Xiao-hui Fan
Zeng-qing Sun
Hao Lv
Guo-jing Wong
Publikationsdatum
24.05.2022
Verlag
Springer Nature Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 11/2022
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-022-00783-7

Weitere Artikel der Ausgabe 11/2022

Journal of Iron and Steel Research International 11/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.