Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 1/2021

25.05.2021 | Original Paper: Sol-gel, hybrids and solution chemistries

Development of dip-coated Cu2ZnSnS4 absorber material without sulphurisation

verfasst von: Ahmed Ziti, Bouchaib Hartiti, Hicham Labrim, Abdelkrim Batan, Salah Fadili, Abderraouf Ridah, Mounia Tahri, Amine Belafhaili, Philippe Thevenin

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quaternary semiconductor Cu2ZnSnS4 absorber material was synthesized by the sol-gel method deposited by the dip-coating technique on ordinary glass substrates. In this study, we have investigated the effects of dip-coating cycle at different cycles: 2, 4 and 6, and annealing temperature at various temperatures: 300, 325 and 375 °C on the structural, morphological compositional, optical and electrical properties. The films have been characterized by different characterization techniques such as X-ray diffractometer (XRD), Raman scattering experiments, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), UV–visible spectrophotometer and four-point probe method. XRD patterns indicated kesterite CZTS with preferential orientation along (112) plane, Cu2-xS, SnS2 and SnS secondary phases were observed with CZTS phase in some samples. The pure CZTS phase was formed for the sample annealed at 375 °C and sample deposited at 2 cycles. Raman spectroscopy confirmed the presence of CZTS thin films in all samples using Raman characteristic peak at 332 cm−1. EDS analysis showed near-stoichiometric CZTS thin films. (SEM) images showed the uniform and dense surfaces morphologies. The gap energy is estimated from absorbance data by using absorption spectra fitting (ASF). The optical band gap decreases with the increasing of dip-coating cycle in the range of 1.33–1.44 ∓ 0.01 eV and also increases with the increasing of annealing temperature in the range of 1.38–1.47 ∓ 0.01 eV. The electrical sheet resistance increased from 2.60 ∓ 0.01 to 4.67 ∓ 0.01 × 103 (Ω/square) when the annealing temperature increased and decreased when the dip-coating cycle increased in range of 0.99 ∓ 0.01 and 1.19 ∓ 0.01 × 103 (Ω/square). These characteristics are suitable for solar cells applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kato T, Wu J-L, Hirai Y, Sugimoto H, Bermudez V (2018) IEEE J Photovolt 9(1):325–330CrossRef Kato T, Wu J-L, Hirai Y, Sugimoto H, Bermudez V (2018) IEEE J Photovolt 9(1):325–330CrossRef
2.
Zurück zum Zitat Kotbi A, Hartiti B, Fadili S, Ridah A, Thevenin P (2016) Opt Quant Electron 48(13):524CrossRef Kotbi A, Hartiti B, Fadili S, Ridah A, Thevenin P (2016) Opt Quant Electron 48(13):524CrossRef
3.
Zurück zum Zitat Tsai H-W, Chen C-W, Thomas SR, Hsu C-H, Tsai W-C, Chen Y-Z, Wang Y-C, Wang ZM, Hong H-F, Chueh Y-L (2016) Sci Rep. 6:19102CrossRef Tsai H-W, Chen C-W, Thomas SR, Hsu C-H, Tsai W-C, Chen Y-Z, Wang Y-C, Wang ZM, Hong H-F, Chueh Y-L (2016) Sci Rep. 6:19102CrossRef
4.
Zurück zum Zitat Ito K, Nakazawa T (1988) Jpn J Appl Phys 27(11):2094–2097 Ito K, Nakazawa T (1988) Jpn J Appl Phys 27(11):2094–2097
5.
Zurück zum Zitat Wang W, Winkler MT, Gunawan O, Gokmen T, Todorov TK, Zhu Y, Mitzi DB (2014) Adv Energy Mater 4:1–5CrossRef Wang W, Winkler MT, Gunawan O, Gokmen T, Todorov TK, Zhu Y, Mitzi DB (2014) Adv Energy Mater 4:1–5CrossRef
8.
Zurück zum Zitat Tang A, Li Z, Wang F, Dou M, Pan Y, Guan J (2017) J Appl Surf Sci 402:70–77CrossRef Tang A, Li Z, Wang F, Dou M, Pan Y, Guan J (2017) J Appl Surf Sci 402:70–77CrossRef
9.
Zurück zum Zitat Jheng B-T, Liu P-T, Wu M-C (2014) Sol EnergyMaterials SolarCells 128:275–282 Jheng B-T, Liu P-T, Wu M-C (2014) Sol EnergyMaterials SolarCells 128:275–282
10.
Zurück zum Zitat Wang K, Gunawan O, Todorov T, Shin B, Chey SJ, Bojarczuk NA, Mitzi D, Guhaa S (2010) Appl Phys Lett 97(14):143508–143508-3CrossRef Wang K, Gunawan O, Todorov T, Shin B, Chey SJ, Bojarczuk NA, Mitzi D, Guhaa S (2010) Appl Phys Lett 97(14):143508–143508-3CrossRef
11.
Zurück zum Zitat Moholkar AV, Shinde SS, Babar AR, Sim K-U, Kwon Y-B, Rajpure KY, Patil PS, Bhosale CH, Kim JH (2011) Sol Energy 85:1354–1363CrossRef Moholkar AV, Shinde SS, Babar AR, Sim K-U, Kwon Y-B, Rajpure KY, Patil PS, Bhosale CH, Kim JH (2011) Sol Energy 85:1354–1363CrossRef
12.
Zurück zum Zitat Arvid Schubert B, Marsen B, Cinque S, Unold T, Klenk R, Schorr S (2011) Prog Photovolt: Res Appl 19:93–96CrossRef Arvid Schubert B, Marsen B, Cinque S, Unold T, Klenk R, Schorr S (2011) Prog Photovolt: Res Appl 19:93–96CrossRef
13.
Zurück zum Zitat Mali SS, Shinde PravinS, Betty CA, Bhosale PN, Oh YW, Patil PS (2012) J Phys Chem Solids 73:735–740CrossRef Mali SS, Shinde PravinS, Betty CA, Bhosale PN, Oh YW, Patil PS (2012) J Phys Chem Solids 73:735–740CrossRef
14.
Zurück zum Zitat Mkawi EM, Al-Hadeethi Y, Shalaan E, Bekyarova E (2018) J Mater Sci: Mater Electron 29:20476–20484 Mkawi EM, Al-Hadeethi Y, Shalaan E, Bekyarova E (2018) J Mater Sci: Mater Electron 29:20476–20484
15.
Zurück zum Zitat Ziti A, Hartiti B, Labrim H, Fadili S, Ridah A, Belhorma B, Tahri M, Thevenin P (2019) Superlattices Microstructures 127:191–200CrossRef Ziti A, Hartiti B, Labrim H, Fadili S, Ridah A, Belhorma B, Tahri M, Thevenin P (2019) Superlattices Microstructures 127:191–200CrossRef
16.
Zurück zum Zitat Ziti A, Hartiti B, Labrim H, Fadili S, Nkuissi HT, Ridah A, Tahri M, Thevenin P (2019) Appl Phys A 125(3):218CrossRef Ziti A, Hartiti B, Labrim H, Fadili S, Nkuissi HT, Ridah A, Tahri M, Thevenin P (2019) Appl Phys A 125(3):218CrossRef
17.
Zurück zum Zitat Agawane GL, Kamble AS, Vanalakar SA, Shin SW, Gang MG, Yun JH, Gwak J, Moholkar AV, Kim JH (2015) Mater Lett 158:58–61CrossRef Agawane GL, Kamble AS, Vanalakar SA, Shin SW, Gang MG, Yun JH, Gwak J, Moholkar AV, Kim JH (2015) Mater Lett 158:58–61CrossRef
18.
Zurück zum Zitat Patel K, Kheraj V, Shah DV, Panchal CJ, Dhere NG (2015) J Alloy Compd 663:842–847CrossRef Patel K, Kheraj V, Shah DV, Panchal CJ, Dhere NG (2015) J Alloy Compd 663:842–847CrossRef
19.
Zurück zum Zitat Hosseinpour R, Izadifard M, Ghazi ME, Bahramian B (2018) J Electron Mater 47:1080–1090CrossRef Hosseinpour R, Izadifard M, Ghazi ME, Bahramian B (2018) J Electron Mater 47:1080–1090CrossRef
20.
21.
Zurück zum Zitat Gupta S, Whittles TJ, Batra Y, Satsangi V, Krishnamurthy S, Dhanak VR, Raj Mehta B (2016) Sol Energy Mater Sol Cells 157:820–830CrossRef Gupta S, Whittles TJ, Batra Y, Satsangi V, Krishnamurthy S, Dhanak VR, Raj Mehta B (2016) Sol Energy Mater Sol Cells 157:820–830CrossRef
22.
Zurück zum Zitat Bakr NA, Khodair ZT, Abdul Hassan SM (2015) Res J Chem Sci 5(10):51–61 Bakr NA, Khodair ZT, Abdul Hassan SM (2015) Res J Chem Sci 5(10):51–61
23.
Zurück zum Zitat Kibasomba PM, Dhlamini S, Maaza M, Liu Ch-P, Rashad MM, Rayan DA, Mwakikunga, BW (2018) Results Phys 9:628–635CrossRef Kibasomba PM, Dhlamini S, Maaza M, Liu Ch-P, Rashad MM, Rayan DA, Mwakikunga, BW (2018) Results Phys 9:628–635CrossRef
24.
Zurück zum Zitat Bakr NA, Salman SA, Hameed, SA (2018) Int J Appl Eng Res, 13(6):3379–3388 Bakr NA, Salman SA, Hameed, SA (2018) Int J Appl Eng Res, 13(6):3379–3388
25.
Zurück zum Zitat Fernandes PA, Salom´e PMP, da Cunha AF (2011) J Alloy Compd 509:7600–7606CrossRef Fernandes PA, Salom´e PMP, da Cunha AF (2011) J Alloy Compd 509:7600–7606CrossRef
26.
Zurück zum Zitat Parkin IP, Price LS, Hibbert TG, Molloy KC (2001) J Mater Chem 11:1486–1490CrossRef Parkin IP, Price LS, Hibbert TG, Molloy KC (2001) J Mater Chem 11:1486–1490CrossRef
27.
Zurück zum Zitat Lund EA, Du H, Hlaing WM, O O, Teeter G, Scarpulla MA (2014) J Appl Phys 115:173503CrossRef Lund EA, Du H, Hlaing WM, O O, Teeter G, Scarpulla MA (2014) J Appl Phys 115:173503CrossRef
28.
Zurück zum Zitat Chandel T, Thakur V, Halaszova S, Prochazka M, Haško D, Velic D, Poolla R (2018) J Electron Mater 47(8):5477–5487CrossRef Chandel T, Thakur V, Halaszova S, Prochazka M, Haško D, Velic D, Poolla R (2018) J Electron Mater 47(8):5477–5487CrossRef
29.
Zurück zum Zitat Guc M, Levcenko S, Bodnar I.V, Izquierdo-Roca V, Fontane X, Volkova L.V, Arushanov E, P-Rodríguez A (2016) Sci Rep 6:19414CrossRef Guc M, Levcenko S, Bodnar I.V, Izquierdo-Roca V, Fontane X, Volkova L.V, Arushanov E, P-Rodríguez A (2016) Sci Rep 6:19414CrossRef
30.
Zurück zum Zitat Nkuissi Tchognia JH, Hartiti B, Ridah A, Ndjaka J-M, Thevenin P (2016) Optical Mater 57:85–92CrossRef Nkuissi Tchognia JH, Hartiti B, Ridah A, Ndjaka J-M, Thevenin P (2016) Optical Mater 57:85–92CrossRef
31.
Zurück zum Zitat Diwate K, Mohite K, Shinde M, Rondiya S, Pawbake A, Dated A, Pathane H, Jadkare S (2017) Energy Procedia 110:180–187CrossRef Diwate K, Mohite K, Shinde M, Rondiya S, Pawbake A, Dated A, Pathane H, Jadkare S (2017) Energy Procedia 110:180–187CrossRef
32.
33.
Zurück zum Zitat Truong Mau T, Kim H (2012) J Ceram Process Res 13(3):301–304 Truong Mau T, Kim H (2012) J Ceram Process Res 13(3):301–304
34.
Zurück zum Zitat Bakr NA, Khodair ZT, Mahdi HI (2016) Int J Mater Sci Appl, ISSN: 2327-2635 (Print); ISSN: 2327-2643, (2016). Bakr NA, Khodair ZT, Mahdi HI (2016) Int J Mater Sci Appl, ISSN: 2327-2635 (Print); ISSN: 2327-2643, (2016).
35.
Zurück zum Zitat Song N, Green MA, Huang J, Hu Y, Hao X (2018) Appl Surf Sci 459:700–706CrossRef Song N, Green MA, Huang J, Hu Y, Hao X (2018) Appl Surf Sci 459:700–706CrossRef
36.
Zurück zum Zitat Muhunthan N, Singh OP, Toutam V, Singh VN (2015) Mater Res Bull 70:373–378CrossRef Muhunthan N, Singh OP, Toutam V, Singh VN (2015) Mater Res Bull 70:373–378CrossRef
37.
Zurück zum Zitat Thiruvenkadama S, Prabhakaran S, Chakravarty S, Ganesan V, Sathe V, Kumar MCSanthosh, Rajesh AL (2018) Phys B: Phys Condens Matter 533:22–27CrossRef Thiruvenkadama S, Prabhakaran S, Chakravarty S, Ganesan V, Sathe V, Kumar MCSanthosh, Rajesh AL (2018) Phys B: Phys Condens Matter 533:22–27CrossRef
38.
Zurück zum Zitat Kotbi A, Hartiti B, Fadili S, Ridah A, Thevenin P (2017) Appl Phys A 123:379CrossRef Kotbi A, Hartiti B, Fadili S, Ridah A, Thevenin P (2017) Appl Phys A 123:379CrossRef
39.
Zurück zum Zitat Souri D, Mohammadi M, Zaliani H (2014) Electron Mater Lett 10(6):1103–1108CrossRef Souri D, Mohammadi M, Zaliani H (2014) Electron Mater Lett 10(6):1103–1108CrossRef
40.
43.
44.
Zurück zum Zitat Suryawanshi MP, Patil PS, Shin SW, Gurav KV, Agawane GL, Gang MG, Kim JH, Moholkar AV (2014) RSC Adv 4(36):18537CrossRef Suryawanshi MP, Patil PS, Shin SW, Gurav KV, Agawane GL, Gang MG, Kim JH, Moholkar AV (2014) RSC Adv 4(36):18537CrossRef
45.
46.
Zurück zum Zitat Feng J, Huang X, Chen W, Wu J, Lin H, Cheng Q, Yun D, Zhang F (2016) Vacuum 126:84e90CrossRef Feng J, Huang X, Chen W, Wu J, Lin H, Cheng Q, Yun D, Zhang F (2016) Vacuum 126:84e90CrossRef
47.
Zurück zum Zitat Deokate RJ, Kate RS, Bulakhe SC (2019) J Mater Sci: Mater Electron, J Mater Sci 30(4):3530–3538 Deokate RJ, Kate RS, Bulakhe SC (2019) J Mater Sci: Mater Electron, J Mater Sci 30(4):3530–3538
48.
Zurück zum Zitat Majula L, Mlyuka NR, Samiji ME (2015) J Korean Phys Soc 67(6):1078–1081CrossRef Majula L, Mlyuka NR, Samiji ME (2015) J Korean Phys Soc 67(6):1078–1081CrossRef
50.
51.
Zurück zum Zitat khalidi Z, Comini E, Hartiti B, Moumen A, Munasinghe Arachchige HMM, Fadili S, Thevenin P, Kamal A (2017) Mater Des 139:56–64CrossRef khalidi Z, Comini E, Hartiti B, Moumen A, Munasinghe Arachchige HMM, Fadili S, Thevenin P, Kamal A (2017) Mater Des 139:56–64CrossRef
52.
Zurück zum Zitat Sadigh B, Erhart P, A. berg D, Trave A, Schwegler E, Bude J (2011) Phys Rev Lett 106:027401CrossRef Sadigh B, Erhart P, A. berg D, Trave A, Schwegler E, Bude J (2011) Phys Rev Lett 106:027401CrossRef
53.
Zurück zum Zitat Ehsani MH, Moghadama RZ, Dizajia HR, Kamel P (2017) Mater Res Express 4(9):096408CrossRef Ehsani MH, Moghadama RZ, Dizajia HR, Kamel P (2017) Mater Res Express 4(9):096408CrossRef
54.
Zurück zum Zitat Fayek SA, El-Ocker M, Hassanien AS (2001) Mater Chem Phys 70(2):231–235CrossRef Fayek SA, El-Ocker M, Hassanien AS (2001) Mater Chem Phys 70(2):231–235CrossRef
55.
Zurück zum Zitat Rey G, Larramona G, Bourdais S, Choné C, Delatouche B, Jacob A, Dennler G, Siebentritt S (2018) Sol Energy Mater Sol Cells 179:142–151CrossRef Rey G, Larramona G, Bourdais S, Choné C, Delatouche B, Jacob A, Dennler G, Siebentritt S (2018) Sol Energy Mater Sol Cells 179:142–151CrossRef
56.
Zurück zum Zitat Zhang K, Tao J, He J, Wang W, Sun L, Yang P, Chu J, Mater J (2014) Sci: Mater Electron 25(6):2703–2709 Zhang K, Tao J, He J, Wang W, Sun L, Yang P, Chu J, Mater J (2014) Sci: Mater Electron 25(6):2703–2709
57.
Zurück zum Zitat Yu X, Ren A, Wang F, Wang C, Zhang J, Wang W, Wu L, Li W, Zeng G, Feng L (2014) Int J Photoenergy 2014 861249(1-6):6 Yu X, Ren A, Wang F, Wang C, Zhang J, Wang W, Wu L, Li W, Zeng G, Feng L (2014) Int J Photoenergy 2014 861249(1-6):6
58.
Zurück zum Zitat Dahal B, Joshi LP, Pandey SN, Shrestha SP (2017) Asian J Chem Sci 2(4):1–8CrossRef Dahal B, Joshi LP, Pandey SN, Shrestha SP (2017) Asian J Chem Sci 2(4):1–8CrossRef
Metadaten
Titel
Development of dip-coated Cu2ZnSnS4 absorber material without sulphurisation
verfasst von
Ahmed Ziti
Bouchaib Hartiti
Hicham Labrim
Abdelkrim Batan
Salah Fadili
Abderraouf Ridah
Mounia Tahri
Amine Belafhaili
Philippe Thevenin
Publikationsdatum
25.05.2021
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 1/2021
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-021-05553-7

Weitere Artikel der Ausgabe 1/2021

Journal of Sol-Gel Science and Technology 1/2021 Zur Ausgabe

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Photocatalytic activity of Fe and Cu co-doped TiO2 nanoparticles under visible light

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Effect of processing parameters on structural and optical properties of CeO2 nanoparticles for the removal of crystal violet dye

Original Paper: Sol-gel, hybrids and solution chemistries

Behavior of zinc- and aluminum β-ketoesterate complexes during steaming treatment

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Co/ZnO/N-C composites obtained by ZIF derived from Co-Zn oxides as highly efficient catalyst for reduction of p-nitrophenol

Original Paper: Sol–gel and hybrid materials for catalytic, photoelectrochemical and sensor applications

Heat treatment as a key factor for enhancing the photodegradation performance of hydrothermally-treated sol–gel TiO2–SiO2 nanocomposites

Original Paper: Sol-gel and hybrid materials for energy, environment and building applications

Preparation and thermal performance of ternary carbonates/silica microcomposites as phase change materials

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.