Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 5/2020

04.02.2020 | Research Article-Civil Engineering

Development of Elements for Analysis of Functionally Graded Beams Using Applied Element Method

verfasst von: D. Lincy Christy, Praveen Nagarajan, T. M. Madhavan Pillai

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Functionally graded material (FGM) is a substitute for laminated composite materials. It avoids the disadvantages of laminated composites. Unlike laminated composite materials, in FGM, there is a continuous change in properties across the depth. It is widely used in the areas of aerospace, biomechanics, automobile, etc. Hence, static and dynamic analysis of FGM is of interest today. Researchers have developed analytical methods for both static and dynamic analyses of FGM. But, numerical analysis is essential to avoid assumptions in the analysis. Usually, the most popular numerical method, the finite element method (FEM), is used for the analysis of FGM structures. To implement the variation in properties in finite element software, FGM is thoroughly meshed along the direction of variation in property. The applied element method (AEM) developed in 1997 has some advantages when compared to FEM. Faster processing, lesser memory requirement and simplicity of analysis are some of them. Usually, most of the research on AEM is on concrete and steel structures. From the formulation, it can be seen that AEM can be used most effectively for FGM. So, in this paper, this aspect is highlighted by conducting static analysis and solving eigen value problem in dynamic analysis of beams made of FGM. The approach in conventional AEM to determine stiffness matrix is simplified so that it is suitable for the analysis of functionally graded (FG) beams. Two-dimensional elements are developed for FG beams with various material property distribution laws. The stiffness matrix and mass matrix are derived, and the method to find strain and stress at various points in FG beams is discussed. The deflection and stress distribution obtained by AEM is compared with those determined by analytical means. Finite element analysis is also carried out and compared. The natural frequency of beams with different length-to-depth ratio and support conditions are found and compared with the results in the literature. From the study, it is seen that AEM can be effectively used for the analysis of structures made of FGM.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Isaac, E.; Demetris, P.; Cristina, G.: Mechanics of Functionally Graded Material Structures. World Scientific, Singapore (2015)MATH Isaac, E.; Demetris, P.; Cristina, G.: Mechanics of Functionally Graded Material Structures. World Scientific, Singapore (2015)MATH
2.
Zurück zum Zitat Sankar, B.V.: An elasticity solution for functionally graded beams. Compos. Sci. Technol. 61(5), 689–696 (2001)CrossRef Sankar, B.V.: An elasticity solution for functionally graded beams. Compos. Sci. Technol. 61(5), 689–696 (2001)CrossRef
3.
Zurück zum Zitat Zhong, Z.; Yu, T.: Two-dimensional analysis of functionally graded beams. AIAA J. 44(12), 3160–3164 (2006)CrossRef Zhong, Z.; Yu, T.: Two-dimensional analysis of functionally graded beams. AIAA J. 44(12), 3160–3164 (2006)CrossRef
4.
Zurück zum Zitat Zhong, Z.; Yu, T.: Analytical solution of a cantilever functionally graded beam. Compos. Sci. Technol. 67(3–4), 481–488 (2007)CrossRef Zhong, Z.; Yu, T.: Analytical solution of a cantilever functionally graded beam. Compos. Sci. Technol. 67(3–4), 481–488 (2007)CrossRef
5.
Zurück zum Zitat Nie, G.J.; Zhong, Z.; Chen, S.: Analytical solution for a functionally graded beam with arbitrary graded material properties. Compos. Part B Eng. 44(1), 274–282 (2013)CrossRef Nie, G.J.; Zhong, Z.; Chen, S.: Analytical solution for a functionally graded beam with arbitrary graded material properties. Compos. Part B Eng. 44(1), 274–282 (2013)CrossRef
6.
Zurück zum Zitat Farhatnia, F.; Sharifi, G.A.; Rasouli, S.: Numerical and analytical approach of thermo-mechanical stresses in FGM beams. In: Proceedings of the World Congress on Engineering, July 2009, p. 2 Farhatnia, F.; Sharifi, G.A.; Rasouli, S.: Numerical and analytical approach of thermo-mechanical stresses in FGM beams. In: Proceedings of the World Congress on Engineering, July 2009, p. 2
7.
Zurück zum Zitat Rao, D.K.; Blessington, P.J.; Tarapada, R.: Finite element modeling and analysis of functionally graded (FG) composite shell structures. Procedia Eng. 38, 3192–3199 (2012)CrossRef Rao, D.K.; Blessington, P.J.; Tarapada, R.: Finite element modeling and analysis of functionally graded (FG) composite shell structures. Procedia Eng. 38, 3192–3199 (2012)CrossRef
8.
Zurück zum Zitat Şimşek, M.: Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method. Int. J. Eng. Appl. Sci. 1(3), 1–11 (2009) Şimşek, M.: Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method. Int. J. Eng. Appl. Sci. 1(3), 1–11 (2009)
9.
Zurück zum Zitat Chakraborty, A.; Gopalakrishnan, S.; Reddy, J.N.: A new beam finite element for the analysis of functionally graded materials. Int. J. Mech. Sci. 45(3), 519–539 (2003)CrossRef Chakraborty, A.; Gopalakrishnan, S.; Reddy, J.N.: A new beam finite element for the analysis of functionally graded materials. Int. J. Mech. Sci. 45(3), 519–539 (2003)CrossRef
10.
Zurück zum Zitat Zhu, H.; Sankar, B.V.: A combined Fourier series–Galerkin method for the analysis of functionally graded beams. J. Appl. Mech. 71(3), 421–424 (2004)CrossRef Zhu, H.; Sankar, B.V.: A combined Fourier series–Galerkin method for the analysis of functionally graded beams. J. Appl. Mech. 71(3), 421–424 (2004)CrossRef
11.
Zurück zum Zitat Aydogdu, M.; Taskin, V.: Free vibration analysis of functionally graded beams with simply supported edges. Mater. Des. 28(5), 1651–1656 (2007)CrossRef Aydogdu, M.; Taskin, V.: Free vibration analysis of functionally graded beams with simply supported edges. Mater. Des. 28(5), 1651–1656 (2007)CrossRef
12.
Zurück zum Zitat Yu, H.; Yuan, Y.: Analytical solution for an infinite Euler–Bernoulli beam on a viscoelastic foundation subjected to arbitrary dynamic loads. J. Eng. Mech. ASCE 140(3), 542–551 (2014)CrossRef Yu, H.; Yuan, Y.: Analytical solution for an infinite Euler–Bernoulli beam on a viscoelastic foundation subjected to arbitrary dynamic loads. J. Eng. Mech. ASCE 140(3), 542–551 (2014)CrossRef
13.
Zurück zum Zitat Yu, H.; Yang, Y.; Yuan, Y.: Analytical solution for a finite Euler–Bernoulli beam with single discontinuity in section under arbitrary dynamic loads. Appl. Math. Model. 60, 571–580 (2018)MathSciNetCrossRef Yu, H.; Yang, Y.; Yuan, Y.: Analytical solution for a finite Euler–Bernoulli beam with single discontinuity in section under arbitrary dynamic loads. Appl. Math. Model. 60, 571–580 (2018)MathSciNetCrossRef
14.
Zurück zum Zitat Yu, H.; Cai, C.; Yuan, Y.; Jia, M.: Analytical solutions for Euler–Bernoulli beam on Pasternak foundation subjected to arbitrary dynamic loads. Int. J. Numer. Anal. Methods Geomech. 41(8), 1125–1137 (2017)CrossRef Yu, H.; Cai, C.; Yuan, Y.; Jia, M.: Analytical solutions for Euler–Bernoulli beam on Pasternak foundation subjected to arbitrary dynamic loads. Int. J. Numer. Anal. Methods Geomech. 41(8), 1125–1137 (2017)CrossRef
15.
Zurück zum Zitat Yu, H.; Zhang, Z.; Chen, J.; Bobet, A.; Zhao, M.; Yuan, Y.: Analytical solution for longitudinal seismic response of tunnel liners with sharp stiffness transition. Tunn. Undergr. Space Technol. 77, 103–114 (2018)CrossRef Yu, H.; Zhang, Z.; Chen, J.; Bobet, A.; Zhao, M.; Yuan, Y.: Analytical solution for longitudinal seismic response of tunnel liners with sharp stiffness transition. Tunn. Undergr. Space Technol. 77, 103–114 (2018)CrossRef
16.
Zurück zum Zitat Yu, H.; Cai, C.; Bobet, A.; Zhao, X.; Yuan, Y.: Analytical solution for longitudinal bending stiffness of shield tunnels. Tunn. Undergr. Space Technol. 83, 27–34 (2019)CrossRef Yu, H.; Cai, C.; Bobet, A.; Zhao, X.; Yuan, Y.: Analytical solution for longitudinal bending stiffness of shield tunnels. Tunn. Undergr. Space Technol. 83, 27–34 (2019)CrossRef
17.
Zurück zum Zitat Meguro, K.; Tagel-Din, H.: A new efficient technique for fracture analysis of structures. Bull. Earthq. Resist. Struct. Res. Cent. 30, 103–116 (1997) Meguro, K.; Tagel-Din, H.: A new efficient technique for fracture analysis of structures. Bull. Earthq. Resist. Struct. Res. Cent. 30, 103–116 (1997)
18.
Zurück zum Zitat Meguro, K.; Tagel-Din, H:. A new simplified and efficient technique for fracture behavior analysis of concrete structures. In: Proceedings of the 3rd International Conference on Fracture Mechanics of Concrete and Concrete Structures (FRAMCOS-3), October 1998, pp. 911–920 Meguro, K.; Tagel-Din, H:. A new simplified and efficient technique for fracture behavior analysis of concrete structures. In: Proceedings of the 3rd International Conference on Fracture Mechanics of Concrete and Concrete Structures (FRAMCOS-3), October 1998, pp. 911–920
19.
Zurück zum Zitat Meguro, K.; Tagel-Din, H.: Applied element method for structural analysis: theory and application for linear materials. Struct. Eng. Earthq. Eng. 17(1), 21–35 (2000) Meguro, K.; Tagel-Din, H.: Applied element method for structural analysis: theory and application for linear materials. Struct. Eng. Earthq. Eng. 17(1), 21–35 (2000)
20.
Zurück zum Zitat Tagel-Din, H.; Meguro, K.: Applied element method for dynamic large deformation analysis of structures. Struct. Eng. Earthq. Eng. 17(2), 215–224 (2000) Tagel-Din, H.; Meguro, K.: Applied element method for dynamic large deformation analysis of structures. Struct. Eng. Earthq. Eng. 17(2), 215–224 (2000)
21.
Zurück zum Zitat Khalil, A.A.: Enhanced modeling of steel structures for progressive collapse analysis using the applied element method. J. Perform. Constr. Facil. 26(6), 766–779 (2012)CrossRef Khalil, A.A.: Enhanced modeling of steel structures for progressive collapse analysis using the applied element method. J. Perform. Constr. Facil. 26(6), 766–779 (2012)CrossRef
22.
Zurück zum Zitat Shakeri, A.; Bargi, K.: Use of applied element method for structural analysis. KSCE J. Civ. Eng. 19(5), 1375–1384 (2015)CrossRef Shakeri, A.; Bargi, K.: Use of applied element method for structural analysis. KSCE J. Civ. Eng. 19(5), 1375–1384 (2015)CrossRef
23.
Zurück zum Zitat Christy, D.L.; Pillai, T.M.M.; Nagarajan, P.: Thin plate element for applied element method. Structures 22, 1–12 (2019)CrossRef Christy, D.L.; Pillai, T.M.M.; Nagarajan, P.: Thin plate element for applied element method. Structures 22, 1–12 (2019)CrossRef
24.
Zurück zum Zitat Timoshenko, S.: Strength of Materials Part 1. Macmillan, London (1940)MATH Timoshenko, S.: Strength of Materials Part 1. Macmillan, London (1940)MATH
25.
Zurück zum Zitat Alshorbagy, A.E.; Eltaher, M.A.; Mahmoud, F.F.: Free vibration characteristics of a functionally graded beam by finite element method. Appl. Math. Model. 35(1), 412–425 (2011)MathSciNetCrossRef Alshorbagy, A.E.; Eltaher, M.A.; Mahmoud, F.F.: Free vibration characteristics of a functionally graded beam by finite element method. Appl. Math. Model. 35(1), 412–425 (2011)MathSciNetCrossRef
Metadaten
Titel
Development of Elements for Analysis of Functionally Graded Beams Using Applied Element Method
verfasst von
D. Lincy Christy
Praveen Nagarajan
T. M. Madhavan Pillai
Publikationsdatum
04.02.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 5/2020
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04375-z

Weitere Artikel der Ausgabe 5/2020

Arabian Journal for Science and Engineering 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.