Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 5/2020

18.09.2019 | Research Article - Civil Engineering

Finite-Element-Based Monte Carlo Simulation for Sandwich Panel-Retrofitted Unreinforced Masonry Walls Subject to Air Blast

verfasst von: B. Zehtab, H. Salehi

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the behavior of three types of masonry walls is assessed subject to blast load as an out-of-plane impulse origin, and they are strengthened by the sandwich panel. The values of displacement and von Mises stress caused by blast loads are calculated using finite-element simulation. The modeled masonry walls are constructed using brick, grouted concrete masonry unit and ungrouted concrete masonry unit. Blast load is modeled by means of the CONWEP (conventional weapon) tool. A reliability analysis is conducted to evaluate outputs statistically and to calculate failure probabilities using Monte Carlo method. Plasticity properties of masonry and steel materials are simulated using concrete damage plasticity and Johnson–Cook (JK) models, respectively. Blast load is applied in three different levels of mild, moderate and severe. Results show that sandwich panel strengthening can efficiently reduce the stress and displacement values for all masonry wall types. Probabilities of failure in strengthened masonry walls are significantly decreased. Moreover, in non-strengthened cases, grouted blockwork wall has a lower stress and displacement comparing to the other masonry walls.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Varma, R.; Tomar, C.; Parkash, S.; Sethi, V.: Damage to brick masonry panel walls under high explosive detonations. Asme-Publications-Pvp 351, 207–216 (1996) Varma, R.; Tomar, C.; Parkash, S.; Sethi, V.: Damage to brick masonry panel walls under high explosive detonations. Asme-Publications-Pvp 351, 207–216 (1996)
2.
Zurück zum Zitat Zehtab, B.; Mirdamadi, H.; Asadi, A.; Rafeeyan, M.: Experimental study on damage identification in GFRP-strengthened RC beams using novel cubic energy-based damage index. Adv. Struct. Eng. 18(10), 1639–1652 (2015)CrossRef Zehtab, B.; Mirdamadi, H.; Asadi, A.; Rafeeyan, M.: Experimental study on damage identification in GFRP-strengthened RC beams using novel cubic energy-based damage index. Adv. Struct. Eng. 18(10), 1639–1652 (2015)CrossRef
3.
Zurück zum Zitat Baylot, J.T.; Bullock, B.; Slawson, T.R.; Woodson, S.C.: Blast response of lightly attached concrete masonry unit walls. J. Struct. Eng. 131(8), 1186–1193 (2005)CrossRef Baylot, J.T.; Bullock, B.; Slawson, T.R.; Woodson, S.C.: Blast response of lightly attached concrete masonry unit walls. J. Struct. Eng. 131(8), 1186–1193 (2005)CrossRef
4.
Zurück zum Zitat Davidson, J.S.; Porter, J.R.; Dinan, R.J.; Hammons, M.I.; Connell, J.D.: Explosive testing of polymer retrofit masonry walls. J. Perform. Constr. Facil. 18(2), 100–106 (2004)CrossRef Davidson, J.S.; Porter, J.R.; Dinan, R.J.; Hammons, M.I.; Connell, J.D.: Explosive testing of polymer retrofit masonry walls. J. Perform. Constr. Facil. 18(2), 100–106 (2004)CrossRef
5.
Zurück zum Zitat Wesevich, J., Oswald, C.: Empirical based concrete masonry pressure-impulse diagrams for varying degrees of damage. In: Structures Congress 2005: Metropolis and Beyond 2005, pp. 1–12 Wesevich, J., Oswald, C.: Empirical based concrete masonry pressure-impulse diagrams for varying degrees of damage. In: Structures Congress 2005: Metropolis and Beyond 2005, pp. 1–12
6.
Zurück zum Zitat Maji, A.K.; Brown, J.P.; Urgessa, G.S.: Full-scale testing and analysis for blast-resistant design. J. Aerosp. Eng. 21(4), 217–225 (2008)CrossRef Maji, A.K.; Brown, J.P.; Urgessa, G.S.: Full-scale testing and analysis for blast-resistant design. J. Aerosp. Eng. 21(4), 217–225 (2008)CrossRef
7.
Zurück zum Zitat Urgessa, G.S.: Finite element analysis of composite hardened walls subjected to blast loads. J. Eng. Appl. Sci. 2(4), 804–811 (2009)CrossRef Urgessa, G.S.: Finite element analysis of composite hardened walls subjected to blast loads. J. Eng. Appl. Sci. 2(4), 804–811 (2009)CrossRef
8.
Zurück zum Zitat Urgessa, G.S.; Maji, A.K.: Dynamic response of retrofitted masonry walls for blast loading. J. Eng. Mech. 136(7), 858–864 (2009)CrossRef Urgessa, G.S.; Maji, A.K.: Dynamic response of retrofitted masonry walls for blast loading. J. Eng. Mech. 136(7), 858–864 (2009)CrossRef
9.
Zurück zum Zitat Lourenço, P.J.B.B.: Computational strategies for masonry structures. Ph.D. Dissertation, Delft University of Technology, Netherlands (1997) Lourenço, P.J.B.B.: Computational strategies for masonry structures. Ph.D. Dissertation, Delft University of Technology, Netherlands (1997)
10.
Zurück zum Zitat Wei, X.; Hao, H.: Numerical derivation of homogenized dynamic masonry material properties with strain rate effects. Int. J. Impact Eng. 36(3), 522–536 (2009)CrossRef Wei, X.; Hao, H.: Numerical derivation of homogenized dynamic masonry material properties with strain rate effects. Int. J. Impact Eng. 36(3), 522–536 (2009)CrossRef
11.
Zurück zum Zitat Ma, G.; Hao, H.; Lu, Y.: Homogenization of masonry using numerical simulations. J. Eng. Mech. 127(5), 421–431 (2001)CrossRef Ma, G.; Hao, H.; Lu, Y.: Homogenization of masonry using numerical simulations. J. Eng. Mech. 127(5), 421–431 (2001)CrossRef
12.
Zurück zum Zitat Wu, C.; Hao, H.: Derivation of 3D masonry properties using numerical homogenization technique. Int. J. Numer. Methods Eng. 66(11), 1717–1737 (2006)CrossRef Wu, C.; Hao, H.: Derivation of 3D masonry properties using numerical homogenization technique. Int. J. Numer. Methods Eng. 66(11), 1717–1737 (2006)CrossRef
13.
Zurück zum Zitat Zucchini, A.; Lourenço, P.B.: A micro-mechanical homogenisation model for masonry: application to shear walls. Int. J. Solids Struct. 46(3), 871–886 (2009)CrossRef Zucchini, A.; Lourenço, P.B.: A micro-mechanical homogenisation model for masonry: application to shear walls. Int. J. Solids Struct. 46(3), 871–886 (2009)CrossRef
14.
Zurück zum Zitat Hallquist, J.O.: LS-DYNA theory manual. Livermore Softw. Technol. Corp. 3, 25–31 (2006) Hallquist, J.O.: LS-DYNA theory manual. Livermore Softw. Technol. Corp. 3, 25–31 (2006)
15.
Zurück zum Zitat Burnett, S.; Gilbert, M.; Molyneaux, T.; Beattie, G.; Hobbs, B.: The performance of unreinforced masonry walls subjected to low-velocity impacts: finite element analysis. Int. J. Impact Eng. 34(8), 1433–1450 (2007)CrossRef Burnett, S.; Gilbert, M.; Molyneaux, T.; Beattie, G.; Hobbs, B.: The performance of unreinforced masonry walls subjected to low-velocity impacts: finite element analysis. Int. J. Impact Eng. 34(8), 1433–1450 (2007)CrossRef
16.
Zurück zum Zitat Dennis, S.T.; Baylot, J.T.; Woodson, S.C.: Response of 1/4-scale concrete masonry unit (CMU) walls to blast. J. Eng. Mech. 128(2), 134–142 (2002)CrossRef Dennis, S.T.; Baylot, J.T.; Woodson, S.C.: Response of 1/4-scale concrete masonry unit (CMU) walls to blast. J. Eng. Mech. 128(2), 134–142 (2002)CrossRef
17.
Zurück zum Zitat Wei, X.; Stewart, M.G.: Model validation and parametric study on the blast response of unreinforced brick masonry walls. Int. J. Impact Eng. 37(11), 1150–1159 (2010)CrossRef Wei, X.; Stewart, M.G.: Model validation and parametric study on the blast response of unreinforced brick masonry walls. Int. J. Impact Eng. 37(11), 1150–1159 (2010)CrossRef
18.
Zurück zum Zitat Hibbitt, Karlsson: Sorensen: ABAQUS/Standard User’s Manual, vol. 1. Karlsson & Sorensen, Hibbitt (2001) Hibbitt, Karlsson: Sorensen: ABAQUS/Standard User’s Manual, vol. 1. Karlsson & Sorensen, Hibbitt (2001)
19.
Zurück zum Zitat Bolhassani, M.; Hamid, A.A.; Lau, A.C.; Moon, F.: Simplified micro modeling of partially grouted masonry assemblages. Constr. Build. Mater. 83, 159–173 (2015)CrossRef Bolhassani, M.; Hamid, A.A.; Lau, A.C.; Moon, F.: Simplified micro modeling of partially grouted masonry assemblages. Constr. Build. Mater. 83, 159–173 (2015)CrossRef
20.
Zurück zum Zitat Zok, F.W.; Waltner, S.A.; Wei, Z.; Rathbun, H.J.; McMeeking, R.M.; Evans, A.G.: A protocol for characterizing the structural performance of metallic sandwich panels: application to pyramidal truss cores. Int. J. Solids Struct. 41(22), 6249–6271 (2004)CrossRef Zok, F.W.; Waltner, S.A.; Wei, Z.; Rathbun, H.J.; McMeeking, R.M.; Evans, A.G.: A protocol for characterizing the structural performance of metallic sandwich panels: application to pyramidal truss cores. Int. J. Solids Struct. 41(22), 6249–6271 (2004)CrossRef
21.
Zurück zum Zitat Ueda, Y., Morinaka, M., Chujo, M., Torigoe, T., Iida, M., Tamada, K.: Honeycomb sandwich panel. In: Google Patents (2004) Ueda, Y., Morinaka, M., Chujo, M., Torigoe, T., Iida, M., Tamada, K.: Honeycomb sandwich panel. In: Google Patents (2004)
22.
Zurück zum Zitat Wang, E.; Gardner, N.; Shukla, A.: The blast resistance of sandwich composites with stepwise graded cores. Int. J. Solids Struct. 46(18), 3492–3502 (2009)CrossRef Wang, E.; Gardner, N.; Shukla, A.: The blast resistance of sandwich composites with stepwise graded cores. Int. J. Solids Struct. 46(18), 3492–3502 (2009)CrossRef
23.
Zurück zum Zitat Dharmasena, K.P.; Wadley, H.N.; Xue, Z.; Hutchinson, J.W.: Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading. Int. J. Impact Eng. 35(9), 1063–1074 (2008)CrossRef Dharmasena, K.P.; Wadley, H.N.; Xue, Z.; Hutchinson, J.W.: Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading. Int. J. Impact Eng. 35(9), 1063–1074 (2008)CrossRef
24.
Zurück zum Zitat Tilbrook, M.; Deshpande, V.; Fleck, N.: Underwater blast loading of sandwich beams: regimes of behaviour. Int. J. Solids Struct. 46(17), 3209–3221 (2009)CrossRef Tilbrook, M.; Deshpande, V.; Fleck, N.: Underwater blast loading of sandwich beams: regimes of behaviour. Int. J. Solids Struct. 46(17), 3209–3221 (2009)CrossRef
25.
Zurück zum Zitat Shen, J.; Lu, G.; Wang, Z.; Zhao, L.: Experiments on curved sandwich panels under blast loading. Int. J. Impact Eng. 37(9), 960–970 (2010)CrossRef Shen, J.; Lu, G.; Wang, Z.; Zhao, L.: Experiments on curved sandwich panels under blast loading. Int. J. Impact Eng. 37(9), 960–970 (2010)CrossRef
26.
Zurück zum Zitat Hua, Y.; Akula, P.K.; Gu, L.: Experimental and numerical investigation of carbon fiber sandwich panels subjected to blast loading. Compos. B Eng. 56, 456–463 (2014)CrossRef Hua, Y.; Akula, P.K.; Gu, L.: Experimental and numerical investigation of carbon fiber sandwich panels subjected to blast loading. Compos. B Eng. 56, 456–463 (2014)CrossRef
27.
Zurück zum Zitat Campbell-Allen, D.; Thorne, C.: The thermal conductivity of concrete. Mag. Concr. Res. 15(43), 39–48 (1963)CrossRef Campbell-Allen, D.; Thorne, C.: The thermal conductivity of concrete. Mag. Concr. Res. 15(43), 39–48 (1963)CrossRef
28.
Zurück zum Zitat Fiorato, A.E., Cruz, C.: Thermal performance of masonry walls. In: Proceedings of 5th International Brick Masonry Conference (VIBMaC) held in Washington, DC, 5–10 Oct. 1979. Edited by J. A. Wintz and A. H. Yorkdale. McLean, Virginia, p. 664 (1982) Fiorato, A.E., Cruz, C.: Thermal performance of masonry walls. In: Proceedings of 5th International Brick Masonry Conference (VIBMaC) held in Washington, DC, 5–10 Oct. 1979. Edited by J. A. Wintz and A. H. Yorkdale. McLean, Virginia, p. 664 (1982)
29.
Zurück zum Zitat Hillerborg, A.: Fracture mechanics concepts applied to moment capacity and rotational capacity of reinforced concrete beams. Eng. Fract. Mech. 35(1–3), 233–240 (1990)CrossRef Hillerborg, A.: Fracture mechanics concepts applied to moment capacity and rotational capacity of reinforced concrete beams. Eng. Fract. Mech. 35(1–3), 233–240 (1990)CrossRef
30.
Zurück zum Zitat Lee, J.; Fenves, G.L.: Plastic-damage model for cyclic loading of concrete structures. J. Eng. Mech. 124(8), 892–900 (1998)CrossRef Lee, J.; Fenves, G.L.: Plastic-damage model for cyclic loading of concrete structures. J. Eng. Mech. 124(8), 892–900 (1998)CrossRef
31.
Zurück zum Zitat Lubliner, J.; Oliver, J.; Oller, S.; Onate, E.: A plastic-damage model for concrete. Int. J. Solids Struct. 25(3), 299–326 (1989)CrossRef Lubliner, J.; Oliver, J.; Oller, S.; Onate, E.: A plastic-damage model for concrete. Int. J. Solids Struct. 25(3), 299–326 (1989)CrossRef
32.
Zurück zum Zitat Wang, W.; Zhang, D.; Lu, F.; Wang, S.-C.; Tang, F.: Experimental study and numerical simulation of the damage mode of a square reinforced concrete slab under close-in explosion. Eng. Fail. Anal. 27, 41–51 (2013)CrossRef Wang, W.; Zhang, D.; Lu, F.; Wang, S.-C.; Tang, F.: Experimental study and numerical simulation of the damage mode of a square reinforced concrete slab under close-in explosion. Eng. Fail. Anal. 27, 41–51 (2013)CrossRef
33.
Zurück zum Zitat Ruggiero, A.; Bonora, N.; Curiale, G.; De Muro, S.; Iannitti, G.; Marfia, S.; Sacco, E.; Scafati, S.; Testa, G.: Full scale experimental tests and numerical model validation of reinforced concrete slab subjected to direct contact explosion. Int. J. Impact Eng. 132, 103309 (2019)CrossRef Ruggiero, A.; Bonora, N.; Curiale, G.; De Muro, S.; Iannitti, G.; Marfia, S.; Sacco, E.; Scafati, S.; Testa, G.: Full scale experimental tests and numerical model validation of reinforced concrete slab subjected to direct contact explosion. Int. J. Impact Eng. 132, 103309 (2019)CrossRef
34.
Zurück zum Zitat Sobolev, A.; Radchenko, M.: Use of Johnson–Cook plasticity model for numerical simulations of the SNF shipping cask drop tests. Nuclear Energy Technol. 2(4), 272–276 (2016)CrossRef Sobolev, A.; Radchenko, M.: Use of Johnson–Cook plasticity model for numerical simulations of the SNF shipping cask drop tests. Nuclear Energy Technol. 2(4), 272–276 (2016)CrossRef
35.
Zurück zum Zitat Johnson, G.R.; Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21(1), 31–48 (1985)CrossRef Johnson, G.R.; Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21(1), 31–48 (1985)CrossRef
36.
Zurück zum Zitat Ozturk, G.: Numerical and Experimental Investigation of Perforation of ST-37. Plates by Oblique Impact. Middle East Technical University, Ankara (2010) Ozturk, G.: Numerical and Experimental Investigation of Perforation of ST-37. Plates by Oblique Impact. Middle East Technical University, Ankara (2010)
37.
Zurück zum Zitat Jankowiak, T.; Lodygowski, T.: Identification of parameters of concrete damage plasticity constitutive model. Found. Civ. Environ. Eng. 6(1), 53–69 (2005) Jankowiak, T.; Lodygowski, T.: Identification of parameters of concrete damage plasticity constitutive model. Found. Civ. Environ. Eng. 6(1), 53–69 (2005)
38.
Zurück zum Zitat Tasnimi, A.; Rezazadeh, M.: Experimental and numerical study of strengthened single storey brick building under torsional moment. Int. J. Civ. Eng. 10(3), 232–244 (2012) Tasnimi, A.; Rezazadeh, M.: Experimental and numerical study of strengthened single storey brick building under torsional moment. Int. J. Civ. Eng. 10(3), 232–244 (2012)
39.
Zurück zum Zitat Eamon, C.D.: Reliability of concrete masonry unit walls subjected to explosive loads. J. Struct. Eng. 133(7), 935–944 (2007)CrossRef Eamon, C.D.: Reliability of concrete masonry unit walls subjected to explosive loads. J. Struct. Eng. 133(7), 935–944 (2007)CrossRef
40.
Zurück zum Zitat DoD, U.: Structures to resist the effects of accidental explosions. In: UFC 3-340-02, US DoD, Washington, DC (2008) DoD, U.: Structures to resist the effects of accidental explosions. In: UFC 3-340-02, US DoD, Washington, DC (2008)
41.
Zurück zum Zitat Hyde, D.: User’s guide for microcomputer program CONWEP, application of TM5-855-1, fundamentals of protective design for conventional weapons. Instructional Rep. No. SL-88, vol. 1 (1992) Hyde, D.: User’s guide for microcomputer program CONWEP, application of TM5-855-1, fundamentals of protective design for conventional weapons. Instructional Rep. No. SL-88, vol. 1 (1992)
42.
Zurück zum Zitat Kingery, C.N., Bulmash, G.: Airblast parameters from TNT spherical air burst and hemispherical surface burst. US Army Armament and Development Center, Ballistic Research Laboratory (1984) Kingery, C.N., Bulmash, G.: Airblast parameters from TNT spherical air burst and hemispherical surface burst. US Army Armament and Development Center, Ballistic Research Laboratory (1984)
43.
Zurück zum Zitat Dewey, J.M.: The shape of the blast wave: studies of the Friedlander equation. In: Proceeding of the 21st International Symposium on Military Aspects of Blast and Shock (MABS), pp. 1–9. Israel (2010) Dewey, J.M.: The shape of the blast wave: studies of the Friedlander equation. In: Proceeding of the 21st International Symposium on Military Aspects of Blast and Shock (MABS), pp. 1–9. Israel (2010)
44.
Zurück zum Zitat Mises, Rv: Mechanik der festen Körper im plastisch-deformablen Zustand. Nachr. Ges. Wiss. Gött. Math. Phys. Kl. 1913(4), 582–592 (1913)MATH Mises, Rv: Mechanik der festen Körper im plastisch-deformablen Zustand. Nachr. Ges. Wiss. Gött. Math. Phys. Kl. 1913(4), 582–592 (1913)MATH
45.
Zurück zum Zitat Tarighat, A.; Zehtab, B.: Structural reliability of reinforced concrete beams/columns under simultaneous static loads and steel reinforcement corrosion. Arab. J. Sci. Eng. 41(10), 3945–3958 (2016)CrossRef Tarighat, A.; Zehtab, B.: Structural reliability of reinforced concrete beams/columns under simultaneous static loads and steel reinforcement corrosion. Arab. J. Sci. Eng. 41(10), 3945–3958 (2016)CrossRef
46.
Zurück zum Zitat Gilbert, M.; Hobbs, B.; Molyneaux, T.: The performance of unreinforced masonry walls subjected to low-velocity impacts: experiments. Int. J. Impact Eng. 27(3), 231–251 (2002)CrossRef Gilbert, M.; Hobbs, B.; Molyneaux, T.: The performance of unreinforced masonry walls subjected to low-velocity impacts: experiments. Int. J. Impact Eng. 27(3), 231–251 (2002)CrossRef
47.
Zurück zum Zitat Rafsanjani, S.H.; Lourenço, P.B.; Peixinho, N.: Implementation and validation of a strain rate dependent anisotropic continuum model for masonry. Int. J. Mech. Sci. 104, 24–43 (2015)CrossRef Rafsanjani, S.H.; Lourenço, P.B.; Peixinho, N.: Implementation and validation of a strain rate dependent anisotropic continuum model for masonry. Int. J. Mech. Sci. 104, 24–43 (2015)CrossRef
48.
Zurück zum Zitat Silva, L.C.; Lourenço, P.B.; Milani, G.: Rigid block and spring homogenized model (HRBSM) for masonry subjected to impact and blast loading. Int. J. Impact Eng. 109, 14–28 (2017)CrossRef Silva, L.C.; Lourenço, P.B.; Milani, G.: Rigid block and spring homogenized model (HRBSM) for masonry subjected to impact and blast loading. Int. J. Impact Eng. 109, 14–28 (2017)CrossRef
Metadaten
Titel
Finite-Element-Based Monte Carlo Simulation for Sandwich Panel-Retrofitted Unreinforced Masonry Walls Subject to Air Blast
verfasst von
B. Zehtab
H. Salehi
Publikationsdatum
18.09.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 5/2020
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-019-04123-y

Weitere Artikel der Ausgabe 5/2020

Arabian Journal for Science and Engineering 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.