Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 5/2020

26.09.2019 | Research Article - Civil Engineering

Transfer Length of Fully Bonded and Partially Bonded Prestressing Strands by Finite Element Method

verfasst von: Mehmet M. Kose, Hakan Erkek

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The objective of this study is to determine the transfer length of fully bonded and partially bonded prestressing strands in pretensioned I-shaped concrete beams by using 3D nonlinear finite element method. Location, bonding condition and percentage of debonding of prestressing strands, dimensions of prestressed concrete beam and material properties were obtained from an experimental study performed at Texas Tech University, and 3D nonlinear FE model was created based on these parameters. SOLID65, SOLID45, LINK8 and CONTA174 finite elements in ANSYS software were used to model short-term and long-term transfer lengths of prestressed concrete beams. Results showed that 3D nonlinear FE model captured actual strain behavior obtained experimentally. Also, transfer lengths obtained by 3D nonlinear FE model were very close to transfer lengths obtained by experimental study compared to current codes and proposed equations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sanabra-Loewe, M.; Capellà-Llovera, J.: The four ages of early prestressed concrete structures. PCI J. 59, 93–121 (2014)CrossRef Sanabra-Loewe, M.; Capellà-Llovera, J.: The four ages of early prestressed concrete structures. PCI J. 59, 93–121 (2014)CrossRef
2.
Zurück zum Zitat Youssef, G.; et al.: Analysis of the behaviour of a bonded joint between laminated wood and ultra high performance fibre reinforced concrete using push-out test. Constr. Build. Mater. 53, 381–391 (2014)CrossRef Youssef, G.; et al.: Analysis of the behaviour of a bonded joint between laminated wood and ultra high performance fibre reinforced concrete using push-out test. Constr. Build. Mater. 53, 381–391 (2014)CrossRef
3.
Zurück zum Zitat Alizadeh, V.; Helwany, S.; Ghorbanpoor, A.; Sobolev, K.: Design and application of controlled low strength materials as a structural fill. Constr. Build. Mater. 53, 425–431 (2014)CrossRef Alizadeh, V.; Helwany, S.; Ghorbanpoor, A.; Sobolev, K.: Design and application of controlled low strength materials as a structural fill. Constr. Build. Mater. 53, 425–431 (2014)CrossRef
4.
Zurück zum Zitat Zhang, W.F.: Symmetric and antisymmetric lateral–torsional buckling of prestressed steel I-beams. Thin-Walled Struct. 122(April 2017), 463–479 (2018)CrossRef Zhang, W.F.: Symmetric and antisymmetric lateral–torsional buckling of prestressed steel I-beams. Thin-Walled Struct. 122(April 2017), 463–479 (2018)CrossRef
5.
Zurück zum Zitat den Uijl, J.A.: Bond modelling of prestressing strand. Spec. Publ. 180, 145–170 (1998) den Uijl, J.A.: Bond modelling of prestressing strand. Spec. Publ. 180, 145–170 (1998)
6.
Zurück zum Zitat Mitchell, D.; Cook, W.D.; Khan, A.A.; Tham, T.: Influence of high strength concrete on transfer and development length of pretensioning strand. PCI J. 38, 52–66 (1993)CrossRef Mitchell, D.; Cook, W.D.; Khan, A.A.; Tham, T.: Influence of high strength concrete on transfer and development length of pretensioning strand. PCI J. 38, 52–66 (1993)CrossRef
7.
Zurück zum Zitat Hwan Oh, B.; Sung Kim, E.; Cheol Choi, Y.: Theoretical analysis of transfer lengths in pretensioned prestressed concrete members. J. Eng. Mech. 132(10), 1057–1066 (2006)CrossRef Hwan Oh, B.; Sung Kim, E.; Cheol Choi, Y.: Theoretical analysis of transfer lengths in pretensioned prestressed concrete members. J. Eng. Mech. 132(10), 1057–1066 (2006)CrossRef
8.
Zurück zum Zitat Oh, B.H.; Kim, E.S.: Realistic evaluation of transfer lengths in pretensioned, prestressed concrete members. ACI Struct. J. 97(6), 821–830 (2000) Oh, B.H.; Kim, E.S.: Realistic evaluation of transfer lengths in pretensioned, prestressed concrete members. ACI Struct. J. 97(6), 821–830 (2000)
9.
Zurück zum Zitat Building Code Requirement for Reinforced Concrete Structures (ACI 318-05). American Concrete Institute, Detroit Michigan (2005) Building Code Requirement for Reinforced Concrete Structures (ACI 318-05). American Concrete Institute, Detroit Michigan (2005)
10.
Zurück zum Zitat Standard Specifications for Highway Bridges, 17th edn. AASHTO (American Association of State Highway and Transportation Officials), Washington, DC (2002) Standard Specifications for Highway Bridges, 17th edn. AASHTO (American Association of State Highway and Transportation Officials), Washington, DC (2002)
11.
Zurück zum Zitat LRFD Bridge Design Specifications, 6th edn. AASHTO (American Association of State Highway and Transportation Officials), Washington, DC (2012) LRFD Bridge Design Specifications, 6th edn. AASHTO (American Association of State Highway and Transportation Officials), Washington, DC (2012)
12.
Zurück zum Zitat Oh, B.H.; Lim, S.N.; Lee, M.K.; Yoo, S.W.: Analysis and prediction of transfer length in pretensioned, prestressed concrete members. ACI Struct. J. 111(3), 549–559 (2014)CrossRef Oh, B.H.; Lim, S.N.; Lee, M.K.; Yoo, S.W.: Analysis and prediction of transfer length in pretensioned, prestressed concrete members. ACI Struct. J. 111(3), 549–559 (2014)CrossRef
13.
Zurück zum Zitat Russel, B.W.; Burns, N.H.: Design guidelines for transfer, development and debonding of large diameter seven wire strands in pretensioned concrete girders, Austin (1993) Russel, B.W.; Burns, N.H.: Design guidelines for transfer, development and debonding of large diameter seven wire strands in pretensioned concrete girders, Austin (1993)
14.
Zurück zum Zitat Kose, M.M.: Prediction of transfer length of prestressing strands using neural networks. ACI Struct. J. 104(2), 162–169 (2007) Kose, M.M.: Prediction of transfer length of prestressing strands using neural networks. ACI Struct. J. 104(2), 162–169 (2007)
15.
Zurück zum Zitat Lane, S.N.: A new development length equation for pretensioned strands in bridge beams and piles. Research Report FHWA-RD-98-116, McLean, VA (1998) Lane, S.N.: A new development length equation for pretensioned strands in bridge beams and piles. Research Report FHWA-RD-98-116, McLean, VA (1998)
16.
Zurück zum Zitat Buckner, C.D.: An analysis of transfer and development lengths for pretensioned concrete structures, Lexington (1994) Buckner, C.D.: An analysis of transfer and development lengths for pretensioned concrete structures, Lexington (1994)
17.
Zurück zum Zitat Kose, M.M.; Burket, W.R.: Formulation of new formulation of new development length equation for 0.6-in. diameter prestressing strand. PCI J. 50(5), 96–105 (2005)CrossRef Kose, M.M.; Burket, W.R.: Formulation of new formulation of new development length equation for 0.6-in. diameter prestressing strand. PCI J. 50(5), 96–105 (2005)CrossRef
18.
Zurück zum Zitat Köse, M.M.; Burket, W.R.: Evaluation of code requirement for 0.6 in (15 mm) prestressing strand. ACI Struct. J. 102(3), 422–428 (2005) Köse, M.M.; Burket, W.R.: Evaluation of code requirement for 0.6 in (15 mm) prestressing strand. ACI Struct. J. 102(3), 422–428 (2005)
19.
Zurück zum Zitat Soparat, P.; Nanakorn, P.: Analysis of anchor bolt pullout in concrete by the element-free Galerkin method. Eng. Struct. 30(12), 3574–3586 (2008)CrossRef Soparat, P.; Nanakorn, P.: Analysis of anchor bolt pullout in concrete by the element-free Galerkin method. Eng. Struct. 30(12), 3574–3586 (2008)CrossRef
20.
Zurück zum Zitat Abdelatif, A.O.; Owen, J.S.; Hussein, M.F.M.: Modelling the prestress transfer in pre-tensioned concrete elements. Finite Elem. Anal. Des. 94(C), 47–63 (2015)CrossRef Abdelatif, A.O.; Owen, J.S.; Hussein, M.F.M.: Modelling the prestress transfer in pre-tensioned concrete elements. Finite Elem. Anal. Des. 94(C), 47–63 (2015)CrossRef
21.
Zurück zum Zitat Burkett, W.R.; Kose M.M.: Development length of 0.6-in.(15-mm) diameter prestressing strand at 2-in. (50-mm) grid spacing in standard I-shaped pretensioned concrete beams. Texas Dep. Transportation, Rep. No. TX/21 98/1388-2, March (1999) Burkett, W.R.; Kose M.M.: Development length of 0.6-in.(15-mm) diameter prestressing strand at 2-in. (50-mm) grid spacing in standard I-shaped pretensioned concrete beams. Texas Dep. Transportation, Rep. No. TX/21 98/1388-2, March (1999)
22.
Zurück zum Zitat ANSYS users manual, Swanson Analysis Systems. Inc., PA, USA, Revision 5.0 (1994) ANSYS users manual, Swanson Analysis Systems. Inc., PA, USA, Revision 5.0 (1994)
23.
Zurück zum Zitat Kaewunruen, S.; Remennikov, A.; Remennikov, A.M.: Nonlinear finite element modelling of railway prestressed concrete sleeper (2006) Kaewunruen, S.; Remennikov, A.; Remennikov, A.M.: Nonlinear finite element modelling of railway prestressed concrete sleeper (2006)
24.
Zurück zum Zitat Bai, F.; Davidson, J.S.: Composite beam theory for pretensioned concrete structures with solutions to transfer length and immediate prestress losses. Eng. Struct. 126, 739–758 (2016)CrossRef Bai, F.; Davidson, J.S.: Composite beam theory for pretensioned concrete structures with solutions to transfer length and immediate prestress losses. Eng. Struct. 126, 739–758 (2016)CrossRef
25.
Zurück zum Zitat Warenycia, K.; Diaz-Arancibia, M.; Okumus, P.: Effects of confinement and concrete nonlinearity on transfer length of prestress in concrete. Structures 11(April), 11–21 (2017)CrossRef Warenycia, K.; Diaz-Arancibia, M.; Okumus, P.: Effects of confinement and concrete nonlinearity on transfer length of prestress in concrete. Structures 11(April), 11–21 (2017)CrossRef
26.
Zurück zum Zitat Xue, W.; Liu, T.; Zeng, M.: Prediction of long-term deflections for high-speed railway prestressed concrete beams. ACI Struct. J. 113(4), 769–778 (2016)CrossRef Xue, W.; Liu, T.; Zeng, M.: Prediction of long-term deflections for high-speed railway prestressed concrete beams. ACI Struct. J. 113(4), 769–778 (2016)CrossRef
27.
Zurück zum Zitat Russell, B.W.; Burns, N.H.: Measurement of transfer lengths on pretensioned concrete elements. J. Struct. Eng. 123(5), 541–549 (1997)CrossRef Russell, B.W.; Burns, N.H.: Measurement of transfer lengths on pretensioned concrete elements. J. Struct. Eng. 123(5), 541–549 (1997)CrossRef
28.
Zurück zum Zitat Janney, J.R.: Nature of bond in pre-tensioned prestressed concrete. ACI J. Proc. 50(5), 717–736 (1954) Janney, J.R.: Nature of bond in pre-tensioned prestressed concrete. ACI J. Proc. 50(5), 717–736 (1954)
29.
Zurück zum Zitat Guyon, Y.: Prestressed Concrete, vol. 1. Wiley, London (1960) Guyon, Y.: Prestressed Concrete, vol. 1. Wiley, London (1960)
30.
Zurück zum Zitat Marshall, G.: End anchorage and bond stress in prestressed concrete. Mag. Concr. Res. 1(3), 123–127 (1949)CrossRef Marshall, G.: End anchorage and bond stress in prestressed concrete. Mag. Concr. Res. 1(3), 123–127 (1949)CrossRef
31.
Zurück zum Zitat Zhao, Y.; Lin, H.; Wu, K.; Jin, W.: Bond behaviour of normal/recycled concrete and corroded steel bars. Constr. Build. Mater. 48, 348–359 (2013)CrossRef Zhao, Y.; Lin, H.; Wu, K.; Jin, W.: Bond behaviour of normal/recycled concrete and corroded steel bars. Constr. Build. Mater. 48, 348–359 (2013)CrossRef
32.
Zurück zum Zitat El Refai, A.; Ammar, M.-A.; Masmoudi, R.: Bond performance of basalt fiber-reinforced polymer bars to concrete. J. Compos. Constr. 19(3), 04014050 (2015)CrossRef El Refai, A.; Ammar, M.-A.; Masmoudi, R.: Bond performance of basalt fiber-reinforced polymer bars to concrete. J. Compos. Constr. 19(3), 04014050 (2015)CrossRef
33.
Zurück zum Zitat Dang, C.N.; Hale, W.M.; Martí-Vargas, J.R.: Quantification of bond performance of 18-mm prestressing steel. Constr. Build. Mater. 159, 451–462 (2018)CrossRef Dang, C.N.; Hale, W.M.; Martí-Vargas, J.R.: Quantification of bond performance of 18-mm prestressing steel. Constr. Build. Mater. 159, 451–462 (2018)CrossRef
34.
Zurück zum Zitat Dang, C.N.; Murray, C.D.; Floyd, R.W.; Micah Hale, W.; Martí-Vargas, J.R.: Analysis of bond stress distribution for prestressing strand by standard test for strand bond. Eng. Struct. 72, 152–159 (2014)CrossRef Dang, C.N.; Murray, C.D.; Floyd, R.W.; Micah Hale, W.; Martí-Vargas, J.R.: Analysis of bond stress distribution for prestressing strand by standard test for strand bond. Eng. Struct. 72, 152–159 (2014)CrossRef
35.
Zurück zum Zitat Wang, L.; Zhang, X.; Zhang, J.; Ma, Y.; Xiang, Y.; Liu, Y.: Effect of insufficient grouting and strand corrosion on flexural behavior of PC beams. Constr. Build. Mater. 53, 213–224 (2014)CrossRef Wang, L.; Zhang, X.; Zhang, J.; Ma, Y.; Xiang, Y.; Liu, Y.: Effect of insufficient grouting and strand corrosion on flexural behavior of PC beams. Constr. Build. Mater. 53, 213–224 (2014)CrossRef
36.
Zurück zum Zitat Nawy, E.G.: Prestressed concrete: a fundamental approach, 5th edn. Prentice Hall, USA (2005) Nawy, E.G.: Prestressed concrete: a fundamental approach, 5th edn. Prentice Hall, USA (2005)
37.
Zurück zum Zitat Yapar, O.; Basu, P.K.; Nordendale, N.: Accurate finite element modeling of pretensioned prestressed concrete beams. Eng. Struct. 101, 163–178 (2015)CrossRef Yapar, O.; Basu, P.K.; Nordendale, N.: Accurate finite element modeling of pretensioned prestressed concrete beams. Eng. Struct. 101, 163–178 (2015)CrossRef
38.
Zurück zum Zitat Osman, B.H.; Wu, E.; Ji, B.; Abdulhameed, S.S.: Effect of reinforcement ratios on shear behavior of concrete beams strengthened with CFRP sheets. HBRC J. 14(1), 29–36 (2016)CrossRef Osman, B.H.; Wu, E.; Ji, B.; Abdulhameed, S.S.: Effect of reinforcement ratios on shear behavior of concrete beams strengthened with CFRP sheets. HBRC J. 14(1), 29–36 (2016)CrossRef
39.
Zurück zum Zitat Uzel, M.; Togay, A.; Anil, Ö.; Söğütlü, C.: Experimental investigation of flexural behavior of glulam beams reinforced with different bonding surface materials. Constr. Build. Mater. 158, 149–163 (2018)CrossRef Uzel, M.; Togay, A.; Anil, Ö.; Söğütlü, C.: Experimental investigation of flexural behavior of glulam beams reinforced with different bonding surface materials. Constr. Build. Mater. 158, 149–163 (2018)CrossRef
40.
Zurück zum Zitat Li, T.; Qu, H.; Wang, Z.; Wei, H.; Jiang, S.: Seismic performance of precast concrete bridge columns with quasi-static cyclic shear test for high seismic zones. Eng. Struct. 166(November 2017), 441–453 (2018) Li, T.; Qu, H.; Wang, Z.; Wei, H.; Jiang, S.: Seismic performance of precast concrete bridge columns with quasi-static cyclic shear test for high seismic zones. Eng. Struct. 166(November 2017), 441–453 (2018)
41.
Zurück zum Zitat Tang, Z.; Sun, J.: The contact analysis for deep groove ball bearing based on ANSYS. Procedia Eng. 23, 423–428 (2011)CrossRef Tang, Z.; Sun, J.: The contact analysis for deep groove ball bearing based on ANSYS. Procedia Eng. 23, 423–428 (2011)CrossRef
42.
Zurück zum Zitat Li, Z.; Ma, H.; Feng, M.; Zhu, Y.; Wen, B.: Meshing characteristics of spur gear pair under different crack types. Eng. Fail. Anal. 80(January), 123–140 (2017)CrossRef Li, Z.; Ma, H.; Feng, M.; Zhu, Y.; Wen, B.: Meshing characteristics of spur gear pair under different crack types. Eng. Fail. Anal. 80(January), 123–140 (2017)CrossRef
43.
Zurück zum Zitat Hanson, N.W.; Kaar, P.H.: Flexural bond tests of pretensioned prestressed beams. J. Proc. 55(1), 783–802 (1959) Hanson, N.W.; Kaar, P.H.: Flexural bond tests of pretensioned prestressed beams. J. Proc. 55(1), 783–802 (1959)
44.
Zurück zum Zitat Kaar, P.H.; LaFraugh, R.W.; Mass, M.A.: Influence of concrete strength on strand transfer length. PCI J. 8(5), 47–67 (1963) Kaar, P.H.; LaFraugh, R.W.; Mass, M.A.: Influence of concrete strength on strand transfer length. PCI J. 8(5), 47–67 (1963)
45.
Zurück zum Zitat Tabatabai, H.; Dickson, T.J.: The history of the prestressing strand development length equation. PCI J. 38(6), 64–75 (1993) Tabatabai, H.; Dickson, T.J.: The history of the prestressing strand development length equation. PCI J. 38(6), 64–75 (1993)
Metadaten
Titel
Transfer Length of Fully Bonded and Partially Bonded Prestressing Strands by Finite Element Method
verfasst von
Mehmet M. Kose
Hakan Erkek
Publikationsdatum
26.09.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 5/2020
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-019-04141-w

Weitere Artikel der Ausgabe 5/2020

Arabian Journal for Science and Engineering 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.