Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

09.01.2020 | Research Article - Civil Engineering | Ausgabe 5/2020

Arabian Journal for Science and Engineering 5/2020

Experimental Investigations and Prediction of Thermal Behaviour of Ferrosialate-Based Geopolymer Mortars

Zeitschrift:
Arabian Journal for Science and Engineering > Ausgabe 5/2020
Autoren:
Bharath Simha Reddy Yeddula, S. Karthiyaini
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s13369-019-04314-7) contains supplementary material, which is available to authorized users.

Abstract

This paper studies the thermal behaviour of ferrosialate geopolymer mortars. This is done by monitoring various factors influencing the strength gain/loss, weight loss, enthalpy changes, physical and chemical transformations in the ferrosialate geopolymer structure using TG/DT analysis. This study proposed a novel predictive equation for estimating this parameter with the help of gene expression programming (GEP). Fly ash is used as a raw feed for sialate geopolymer, and red mud along with fly ash is used for ferrosialate geopolymer. Till 200 °C, oven-cured samples showed maximum strength results. Whereas in later stages, i.e. after exposure to 400 °C, ambient cured samples surpassed the former by 4.14%. Development of broad amorphous hump in the XRD patterns, presence of thicker geopolymer structure in the SEM images for 400 °C samples, an exothermic peak in the DTA curves at 400 °C and increment in the compressive strength up to 400 °C exposure, all pointing to a conclusion that elevated temperature-favoured ferrosialate geopolymer formation till 400 °C. After exposure to 800 °C, maximum strength loss of 68.57% and 30.3% is observed for sialate and ferrosialate samples dehydroxylation, recrystallization, and melting of unreacted particles are the reasons for diminishing the strength at elevated temperatures. An equation using GEP model (r2 = 0.913) having nine genes is proposed that can predict the residual compressive strength of ferrosialate geopolymer mortars. Though this model is for ferrosialate geopolymer, a similar technique can be easily adapted to other types of geopolymers.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Zusatzmaterial
Nur für berechtigte Nutzer zugänglich
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2020

Arabian Journal for Science and Engineering 5/2020 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

    Bildnachweise