Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2015

01.02.2015

Development of Ultrafine Grained Zircaloy-2 by Room Temperature Cross Rolling

verfasst von: Sunkulp Goel, Nachiket Keskar, R. Jayaganthan, I. V. Singh, D. Srivastava, G. K. Dey, N. Saibaba

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Effect of change in strain path by cross rolling up to a true strain of 1.89 has been studied in the present work. The Zircaloy-2 was subjected to solutionising heat treatment at 800 °C in argon environment for 2 h and subsequently quenched in mercury prior to cross rolling at room temperature. The fragmentation of near basal grains due to change in strain path is evident from the EBSD micrographs. The dislocation density in the crossrolled alloy increases with true strain as calculated from the XRD and EBSD data and it is found to be 2.806453 × 1016/m2. \( \left\{ {10\bar{1}2} \right\} \) extension twins are observed initially up to 25% reduction, with the further reduction in thickness, near basal grains are oriented toward the normal direction. These basal grains undergone fragmentation due to changes in strain path upon cross-rolling as observed from KAM and EBSD images. TEM results of the cross-rolled sample confirm the formation of ultrafine and nanograins in the alloy due to orientation of incidental dislocation boundaries in the direction of macroscopic plastic flow and post-annealing treatment of the deformed alloy. A tensile strength of 991 MPa with 7.5% ductility is observed in the 85% cross-rolled alloy. The cross-rolled alloy upon annealing at 400 °C for 30 min improves ductility to 11%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.L. Mehan, F.W. Wiesinger, Mechanical Properties of Zircaloy-2. AEC Research and development report, 1961 R.L. Mehan, F.W. Wiesinger, Mechanical Properties of Zircaloy-2. AEC Research and development report, 1961
2.
Zurück zum Zitat E.F. Ibrahim applications-related phenomena for zirconium and its alloys, ASTM STP 458, American Society for Testing and Materials, 1969, p. 18–36 E.F. Ibrahim applications-related phenomena for zirconium and its alloys, ASTM STP 458, American Society for Testing and Materials, 1969, p. 18–36
3.
Zurück zum Zitat A.R. Massih, M. Dahlback, M. Limback, T. Andersson, and B. Lehtinen, Effect of beta-to-alpha phase transition rate on corrosion behaviour of zircaloy, Corros. Sci., 2006, 48, p 1154–1181CrossRef A.R. Massih, M. Dahlback, M. Limback, T. Andersson, and B. Lehtinen, Effect of beta-to-alpha phase transition rate on corrosion behaviour of zircaloy, Corros. Sci., 2006, 48, p 1154–1181CrossRef
4.
Zurück zum Zitat C. Degueldre, J. Raabe, G. Kuri, and S. Abolhassani, Zircaloy-2 secondary phase precipitate analysis by x-ray microspectroscopy, Talanta, 2008, 75, p 402–406CrossRef C. Degueldre, J. Raabe, G. Kuri, and S. Abolhassani, Zircaloy-2 secondary phase precipitate analysis by x-ray microspectroscopy, Talanta, 2008, 75, p 402–406CrossRef
5.
Zurück zum Zitat X. Menc and D.O. Northwood, Second phase particles in zircaloy-2, J. Nucl. Mater., 1989, 168, p 125–136CrossRef X. Menc and D.O. Northwood, Second phase particles in zircaloy-2, J. Nucl. Mater., 1989, 168, p 125–136CrossRef
6.
Zurück zum Zitat T. Jayakumar, P. Palanichamy, and B. Raj, Detection of hard intermetallics in b-quenched and thermally aged Zircaloy-2 using ultrasonic measurements, J. Nucl. Mater., 1998, 255, p 243–249CrossRef T. Jayakumar, P. Palanichamy, and B. Raj, Detection of hard intermetallics in b-quenched and thermally aged Zircaloy-2 using ultrasonic measurements, J. Nucl. Mater., 1998, 255, p 243–249CrossRef
7.
Zurück zum Zitat G. Ostberg, Crack propagation in hydrided zircaloy-2, Int. J. Fract. Mech., 1968, 4, p 95–98 G. Ostberg, Crack propagation in hydrided zircaloy-2, Int. J. Fract. Mech., 1968, 4, p 95–98
8.
Zurück zum Zitat R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater Sci., 2000, 45, p 103–189CrossRef R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater Sci., 2000, 45, p 103–189CrossRef
9.
Zurück zum Zitat Y. Estrin and A. Vinogradov, Extreme grain refinement by severe plastic deformation: a wealth of challenging science, Acta Mater., 2013, 61, p 782–817CrossRef Y. Estrin and A. Vinogradov, Extreme grain refinement by severe plastic deformation: a wealth of challenging science, Acta Mater., 2013, 61, p 782–817CrossRef
10.
Zurück zum Zitat M. Vedani, P. Bassani, A. Tuissi, and G. Angella, Ultrafine grained alloys produced by severe plastic deformation: issues on microstructural control and mechanical behaviour, Metall. Sci. Technol., 2004, 19, p 21–30 M. Vedani, P. Bassani, A. Tuissi, and G. Angella, Ultrafine grained alloys produced by severe plastic deformation: issues on microstructural control and mechanical behaviour, Metall. Sci. Technol., 2004, 19, p 21–30
11.
Zurück zum Zitat A. Shokuhfar and O. Nejadseyfi, The influence of friction on the processing of ultrafine-grained/nanostructured materials by equal-channel angular pressing, J. Mater. Eng. Perform., 2014, 23, p 1038–1048CrossRef A. Shokuhfar and O. Nejadseyfi, The influence of friction on the processing of ultrafine-grained/nanostructured materials by equal-channel angular pressing, J. Mater. Eng. Perform., 2014, 23, p 1038–1048CrossRef
12.
Zurück zum Zitat X. Cheng, T.G. Langdon, Z. Horita, and M. Furukawa, Using equal-channel angular pressing for the production of superplastic aluminum and magnesium alloys, J. Mater. Eng. Perform., 2004, 13, p 683–690CrossRef X. Cheng, T.G. Langdon, Z. Horita, and M. Furukawa, Using equal-channel angular pressing for the production of superplastic aluminum and magnesium alloys, J. Mater. Eng. Perform., 2004, 13, p 683–690CrossRef
13.
Zurück zum Zitat K. Rahimi Mamaghani and M. Kazeminezhad, The effect of direct and cross-rolling on mechanical properties and microstructure of severely deformed aluminum, J. Mater. Eng. Perform., 2014, 23, p 115–124CrossRef K. Rahimi Mamaghani and M. Kazeminezhad, The effect of direct and cross-rolling on mechanical properties and microstructure of severely deformed aluminum, J. Mater. Eng. Perform., 2014, 23, p 115–124CrossRef
14.
Zurück zum Zitat C. Vanitha, M. Kiran Kumar, G.K. Dey, D. Srivastava, R. Tewari, and S. Banerjee, Recrystallization texture development in single-phase Zircaloy, Mater. Sci. Eng. A, 2009, 519, p 251–260CrossRef C. Vanitha, M. Kiran Kumar, G.K. Dey, D. Srivastava, R. Tewari, and S. Banerjee, Recrystallization texture development in single-phase Zircaloy, Mater. Sci. Eng. A, 2009, 519, p 251–260CrossRef
15.
Zurück zum Zitat F. Xu, R.A. Holt, and M.R. Daymond, Modeling lattice strain evolution during uniaxial deformation of textured Zircaloy-2, Acta Mater., 2008, 56, p 3672–3687CrossRef F. Xu, R.A. Holt, and M.R. Daymond, Modeling lattice strain evolution during uniaxial deformation of textured Zircaloy-2, Acta Mater., 2008, 56, p 3672–3687CrossRef
16.
Zurück zum Zitat D. Lee, Role of plastic anisotropy in the fatigue behavior of zircaloy, Metall. Trans., 1972, 3, p 315–328CrossRef D. Lee, Role of plastic anisotropy in the fatigue behavior of zircaloy, Metall. Trans., 1972, 3, p 315–328CrossRef
17.
Zurück zum Zitat R.G. Ballinger and R.M. Pelloux, The effect of anisotropy on the mechanical behavior of Zircaloy-2, J. Nucl. Mater., 1981, 97, p 231–253CrossRef R.G. Ballinger and R.M. Pelloux, The effect of anisotropy on the mechanical behavior of Zircaloy-2, J. Nucl. Mater., 1981, 97, p 231–253CrossRef
18.
Zurück zum Zitat P. Mukherjee, A. Sarkar, P. Barat, S.K. Bandyopadhyay, P. Sen, S.K. Chattopadhyay, P. Chatterjee, S.K. Chatterjee, and M.K. Mitra, Deformation characteristics of rolled zirconium alloys: a study by x-ray diffraction line profile analysis, Acta Mater., 2004, 52, p 5687–5696CrossRef P. Mukherjee, A. Sarkar, P. Barat, S.K. Bandyopadhyay, P. Sen, S.K. Chattopadhyay, P. Chatterjee, S.K. Chatterjee, and M.K. Mitra, Deformation characteristics of rolled zirconium alloys: a study by x-ray diffraction line profile analysis, Acta Mater., 2004, 52, p 5687–5696CrossRef
19.
Zurück zum Zitat C.L. Whitmarsh, Oak Ridge National Laboratory Oak Ridge, Tennessee Operated “By Union Carbide Corporation For The US Atomic Energy Commission 1962, ORNL-3281 UC-80-Reactor technology TID-4500 (17th Edition). C.L. Whitmarsh, Oak Ridge National Laboratory Oak Ridge, Tennessee Operated “By Union Carbide Corporation For The US Atomic Energy Commission 1962, ORNL-3281 UC-80-Reactor technology TID-4500 (17th Edition).
20.
Zurück zum Zitat S. Goel, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, and N. Saibaba, Mechanical and microstructural characterizations of ultrafine grained zircaloy-2 produced by room temperature rolling, J. Mater. Des., 2014, 55, p 612–618CrossRef S. Goel, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, and N. Saibaba, Mechanical and microstructural characterizations of ultrafine grained zircaloy-2 produced by room temperature rolling, J. Mater. Des., 2014, 55, p 612–618CrossRef
21.
Zurück zum Zitat E. Tenckhoff, Deformation mechanisms, texture, and anisotropy in zirconium and zircaloy. American Society for Testing and Materials, 1988 E. Tenckhoff, Deformation mechanisms, texture, and anisotropy in zirconium and zircaloy. American Society for Testing and Materials, 1988
22.
Zurück zum Zitat M.H. Yoo, Slip, twinning, and fracture in hexagonal close packed metals, Metall. Mater. Trans. A, 1981, 12, p 409–418CrossRef M.H. Yoo, Slip, twinning, and fracture in hexagonal close packed metals, Metall. Mater. Trans. A, 1981, 12, p 409–418CrossRef
23.
Zurück zum Zitat M. Knezevic, I.J. Beyerlein, T. Nizolek, N.A. Mara, and T.M. Pollock, Anomalous basal slip activity in zirconium under high strain deformation, Mater. Res. Lett., 2013, 1, p 133–140CrossRef M. Knezevic, I.J. Beyerlein, T. Nizolek, N.A. Mara, and T.M. Pollock, Anomalous basal slip activity in zirconium under high strain deformation, Mater. Res. Lett., 2013, 1, p 133–140CrossRef
24.
Zurück zum Zitat K. Linga Murty and Indrajit Charit, Texture development and anisotropic deformation of zircaloys, Prog. Nucl. Energy, 2006, 48, p 325–359CrossRef K. Linga Murty and Indrajit Charit, Texture development and anisotropic deformation of zircaloys, Prog. Nucl. Energy, 2006, 48, p 325–359CrossRef
25.
Zurück zum Zitat R.J. McCabe, G. Proust, E.K. Cerreta, and A. Misra, Quantitative analysis of deformation twinning in zirconium, Int. J. Plast., 2009, 25, p 454–472CrossRef R.J. McCabe, G. Proust, E.K. Cerreta, and A. Misra, Quantitative analysis of deformation twinning in zirconium, Int. J. Plast., 2009, 25, p 454–472CrossRef
26.
Zurück zum Zitat N. Hansen, New discoveries in deformed metals, Metall. Mater. Trans. A, 2001, 32, p 2917–2935CrossRef N. Hansen, New discoveries in deformed metals, Metall. Mater. Trans. A, 2001, 32, p 2917–2935CrossRef
27.
Zurück zum Zitat D.A. Hughes, N. Hansen, and D.J. Bammann, Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations, Scr. Mater., 2003, 48, p 147–153CrossRef D.A. Hughes, N. Hansen, and D.J. Bammann, Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations, Scr. Mater., 2003, 48, p 147–153CrossRef
28.
Zurück zum Zitat Qing Liu and Niels Hansen, Geometrically necessary boundaries and incidental dislocation boundaries formed during cold deformation, Scr. Metall. Mater., 1995, 8, p 1289–1295CrossRef Qing Liu and Niels Hansen, Geometrically necessary boundaries and incidental dislocation boundaries formed during cold deformation, Scr. Metall. Mater., 1995, 8, p 1289–1295CrossRef
29.
Zurück zum Zitat A. Borbely and I. Groma, Variance method for the evaluation of particle size and dislocation density from x-ray Bragg peaks, Appl. Phys. Lett., 2001, 79, p 1972–1974CrossRef A. Borbely and I. Groma, Variance method for the evaluation of particle size and dislocation density from x-ray Bragg peaks, Appl. Phys. Lett., 2001, 79, p 1972–1974CrossRef
30.
Zurück zum Zitat I. Groma, x-ray line broadening due to an inhomogeneous dislocation distribution, Phys. Rev. B, 1998, 57, p 7535–7542CrossRef I. Groma, x-ray line broadening due to an inhomogeneous dislocation distribution, Phys. Rev. B, 1998, 57, p 7535–7542CrossRef
31.
Zurück zum Zitat A. Sarkar, P. Mukherjee, and P. Barat, x-ray diffraction studies on asymmetrically broadened peaks of heavily deformed zirconium-based alloys, Mater. Sci. Eng. A, 2008, 485, p 176–181CrossRef A. Sarkar, P. Mukherjee, and P. Barat, x-ray diffraction studies on asymmetrically broadened peaks of heavily deformed zirconium-based alloys, Mater. Sci. Eng. A, 2008, 485, p 176–181CrossRef
32.
Zurück zum Zitat S.K. Sahoo, V.D. Hiwarkar, I. Samajdar, G.K. Dey, D. Srivastav, R. Tiwari, and S. Banerjee, Heterogeneous deformation in single-phase Zircaloy 2, Scr. Mater., 2007, 56, p 963–966CrossRef S.K. Sahoo, V.D. Hiwarkar, I. Samajdar, G.K. Dey, D. Srivastav, R. Tiwari, and S. Banerjee, Heterogeneous deformation in single-phase Zircaloy 2, Scr. Mater., 2007, 56, p 963–966CrossRef
33.
Zurück zum Zitat Y. Wang, M. Chen, F. Zhou, and E. Ma, High tensile ductility in a nanostructured metal, Nature, 2002, 419, p 912–914CrossRef Y. Wang, M. Chen, F. Zhou, and E. Ma, High tensile ductility in a nanostructured metal, Nature, 2002, 419, p 912–914CrossRef
34.
Zurück zum Zitat D. Guo, M. Li, Y. Shi, Z. Zhang, H. Zhang, X. Liu, B. Wei, and X. Zhang, High strength and ductility in multimodal-structured Zr, Mater. Des., 2012, 34, p 275–278CrossRef D. Guo, M. Li, Y. Shi, Z. Zhang, H. Zhang, X. Liu, B. Wei, and X. Zhang, High strength and ductility in multimodal-structured Zr, Mater. Des., 2012, 34, p 275–278CrossRef
35.
Zurück zum Zitat D. Guo, M. Li, Y. Shi, Z. Zhang, T. Ma, H. Zhang, and X. Zhang, Simultaneously enhancing the ductility and strength of cryorolled Zr via tailoring dislocation configurations, Mater. Sci. Eng. A, 2012, 558, p 611–615CrossRef D. Guo, M. Li, Y. Shi, Z. Zhang, T. Ma, H. Zhang, and X. Zhang, Simultaneously enhancing the ductility and strength of cryorolled Zr via tailoring dislocation configurations, Mater. Sci. Eng. A, 2012, 558, p 611–615CrossRef
36.
Zurück zum Zitat F.J. Humphreys and M. Hatherly, Recrystallization and related annealing phenomena, Elsevier, Oxford, 2004 F.J. Humphreys and M. Hatherly, Recrystallization and related annealing phenomena, Elsevier, Oxford, 2004
37.
Zurück zum Zitat R.J. Mccabe, E.K. Cerreta, A. Misra, G.C. Kaschner, and C.N. Tome, Effects of texture, temperature and strain on the deformation modes of zirconium, Philos. Mag., 2006, 86, p 3595–3611CrossRef R.J. Mccabe, E.K. Cerreta, A. Misra, G.C. Kaschner, and C.N. Tome, Effects of texture, temperature and strain on the deformation modes of zirconium, Philos. Mag., 2006, 86, p 3595–3611CrossRef
38.
Zurück zum Zitat G. Monnet, B. Devincre, and L.P. Kubin, Dislocation study of prismatic slip systems and their interactions in hexagonal close packed metals: application to zirconium, Acta Mater., 2004, 52, p 4317–4328CrossRef G. Monnet, B. Devincre, and L.P. Kubin, Dislocation study of prismatic slip systems and their interactions in hexagonal close packed metals: application to zirconium, Acta Mater., 2004, 52, p 4317–4328CrossRef
39.
Zurück zum Zitat L. Li, T. Unga, Y.D. Wang, G.J. Fan, Y.L. Yang, N. Jia, Y. Ren, G. Tichy, J. Lendvai, H. Chooa, and P.K. Liawa, Simultaneous reductions of dislocation and twin densities with grain growth during cold rolling in a nanocrystalline Ni-Fe alloy, Scr. Mater., 2009, 60, p 317–320CrossRef L. Li, T. Unga, Y.D. Wang, G.J. Fan, Y.L. Yang, N. Jia, Y. Ren, G. Tichy, J. Lendvai, H. Chooa, and P.K. Liawa, Simultaneous reductions of dislocation and twin densities with grain growth during cold rolling in a nanocrystalline Ni-Fe alloy, Scr. Mater., 2009, 60, p 317–320CrossRef
40.
Zurück zum Zitat N.P. Gurao and Satyam Suwas, Deformation mechanisms during large strain deformation of nanocrystalline Nickel, Appl. Phys. Lett., 2009, 94, p 191902CrossRef N.P. Gurao and Satyam Suwas, Deformation mechanisms during large strain deformation of nanocrystalline Nickel, Appl. Phys. Lett., 2009, 94, p 191902CrossRef
41.
Zurück zum Zitat S.K. Sahoo, V.D. Hiwarkar, K.V. Mani Krishna, I. Samajdar, P. Pant, P.K. Pujari, G.K. Dey, D. Srivastava, R. Tiwari, and S. Banerjee, Grain fragmentation and twinning in deformed Zircaloy 2: response to positron lifetime measurements, Mater. Sci. Eng. A, 2010, 527, p 1427–1435CrossRef S.K. Sahoo, V.D. Hiwarkar, K.V. Mani Krishna, I. Samajdar, P. Pant, P.K. Pujari, G.K. Dey, D. Srivastava, R. Tiwari, and S. Banerjee, Grain fragmentation and twinning in deformed Zircaloy 2: response to positron lifetime measurements, Mater. Sci. Eng. A, 2010, 527, p 1427–1435CrossRef
Metadaten
Titel
Development of Ultrafine Grained Zircaloy-2 by Room Temperature Cross Rolling
verfasst von
Sunkulp Goel
Nachiket Keskar
R. Jayaganthan
I. V. Singh
D. Srivastava
G. K. Dey
N. Saibaba
Publikationsdatum
01.02.2015
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2015
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-014-1287-y

Weitere Artikel der Ausgabe 2/2015

Journal of Materials Engineering and Performance 2/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.